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1. Let the decision variables be

xij = the number of products transferred from DC at location i to store at location j.

Let the parameters be

Sj = the number of products demanded by store at location j,

Mi = cost per product of maintaining the operation in DC at location i,

Ki = maximum scale of DC at location i, and

Dij = distant between DC at location i and store at location j.

The formulation is

min
10∑
i=1

Mi

100∑
j=1

xij

 +
10∑
i=1

100∑
j=1

Dijxij

s.t.

10∑
i=1

xij = Sj ∀j = 1, ..., 100

100∑
j=1

xij ≤ Ki ∀i = 1, ..., 10

xij ≥ 0 ∀i = 1, ..., 10 ∀j = 1, ..., 100.

• Objective function: Adding maintenance cost(the former one) and replenishment cost(the
latter one).

• Constraint 1: All the demand of each store must be exactly satisfied.

• Constraint 2: The scale of each DC cannot exceed its maximum scale.

• Constraint 3: The number of products transferred must be nonnegative.

2. Check the AMPL model ”case1.mod” and data ”case1.dat”. After solving, the minimum cost is
143165 and the construction cost is 24150. Thus, we need 167315 in total cost.

3. Table 1 is the optimal scale of each DC.

DC 1 4 6 8 9 10
Total 1491 550 1077 361 589 404

Table 1: optimal scale of each DC

Table 2 is the replenishment plan

HHH
HHS
D

1 2 3 4 5 6 7 8 9 10

1 0 0 0 0 0 53 0 0 0 0
2 0 0 0 0 0 79 0 0 0 0
3 0 0 0 0 0 34 0 0 0 0
4 0 0 0 0 0 29 0 0 0 0
5 0 0 0 0 0 48 0 0 0 0
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6 0 0 0 0 0 0 0 51 0 0
7 0 0 0 0 0 0 0 0 0 34
8 0 0 0 0 0 11 0 0 0 0
9 0 0 0 0 0 0 0 0 96 0
10 40 0 0 0 0 0 0 0 0 0
11 13 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 19
13 0 0 0 0 0 0 0 0 0 5
14 0 0 0 90 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 4 0
16 0 0 0 86 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0 0 81
18 0 0 0 0 0 0 0 86 0 0
19 0 0 0 0 0 49 0 0 0 0
20 0 0 0 0 0 0 0 0 29 0
21 0 0 0 0 0 0 0 0 0 92
22 54 0 0 0 0 0 0 0 0 0
23 14 0 0 0 0 0 0 0 0 0
24 0 0 0 0 0 0 0 63 0 0
25 0 0 0 0 0 54 0 0 0 0
26 0 0 0 0 0 0 0 0 56 0
27 0 0 0 0 0 90 0 0 0 0
28 0 0 0 0 0 22 0 0 0 0
29 0 0 0 1 0 0 0 0 0 0
30 0 0 0 0 0 27 0 0 0 0
31 35 0 0 0 0 0 0 0 0 0
32 0 0 0 89 0 0 0 0 0 0
33 36 0 0 0 0 0 0 0 0 0
34 0 0 0 0 0 32 0 0 0 0
35 20 0 0 0 0 0 0 0 0 0
36 0 0 0 41 0 0 0 0 0 0
37 26 0 0 0 0 0 0 0 0 0
38 0 0 0 0 0 0 0 0 17 0
39 0 0 0 0 0 0 0 0 0 67
40 0 0 0 0 0 0 0 0 0 49
41 0 0 0 0 0 54 0 0 0 0
42 0 0 0 28 0 0 0 0 0 0
43 0 0 0 76 0 0 0 0 0 0
44 0 0 0 0 0 0 0 0 93 0
45 0 0 0 0 0 79 0 0 0 0
46 0 0 0 0 0 0 0 0 91 0
47 0 0 0 0 0 0 0 44 0 0
48 47 0 0 0 0 0 0 0 0 0
49 0 0 0 0 0 0 0 0 47 0
50 0 0 0 7 0 0 0 0 0 0
51 0 0 0 0 0 52 0 0 0 0
52 0 0 0 0 0 0 0 0 8 0
53 0 0 0 0 0 28 0 0 0 0
54 87 0 0 0 0 0 0 0 0 0
55 0 0 0 46 0 0 0 0 0 0
56 0 0 0 0 0 0 0 0 0 25
57 0 0 0 0 0 66 0 0 0 0
58 43 0 0 0 0 0 0 0 0 0
59 14 0 0 0 0 0 0 0 0 0
60 0 0 0 0 0 88 0 0 0 0
61 0 0 0 0 0 0 0 0 22 0
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62 0 0 0 0 0 0 0 0 62 0
63 15 0 0 0 0 0 0 0 0 0
64 17 0 0 0 0 0 0 0 0 0
65 77 0 0 0 0 0 0 0 0 0
66 78 0 0 0 0 0 0 0 0 0
67 0 0 0 0 0 50 0 0 0 0
68 16 0 0 0 0 0 0 0 0 0
69 0 0 0 34 0 0 0 0 0 0
70 95 0 0 0 0 0 0 0 0 0
71 44 0 0 0 0 0 0 0 0 0
72 53 0 0 0 0 0 0 0 0 0
73 41 0 0 0 0 0 0 0 0 0
74 0 0 0 0 0 0 0 0 7 0
75 0 0 0 0 0 0 0 23 0 0
76 28 0 0 0 0 0 0 0 0 0
77 0 0 0 0 0 0 0 0 0 7
78 57 0 0 0 0 0 0 0 0 0
79 58 0 0 0 0 0 0 0 0 0
80 99 0 0 0 0 0 0 0 0 0
81 51 0 0 0 0 0 0 0 0 0
82 0 0 0 0 0 28 0 0 0 0
83 0 0 0 0 0 13 0 0 0 0
84 0 0 0 0 0 0 0 0 0 25
85 0 0 0 0 0 43 0 0 0 0
86 19 0 0 0 0 0 0 0 0 0
87 0 0 0 0 0 0 0 0 17 0
88 0 0 0 52 0 0 0 0 0 0
89 0 0 0 0 0 0 0 0 33 0
90 0 0 0 0 0 0 0 79 0 0
91 89 0 0 0 0 0 0 0 0 0
92 59 0 0 0 0 0 0 0 0 0
93 0 0 0 0 0 3 0 0 0 0
94 0 0 0 0 0 45 0 0 0 0
95 7 0 0 0 0 0 0 0 0 0
96 0 0 0 0 0 0 0 0 7 0
97 1 0 0 0 0 0 0 0 0 0
98 58 0 0 0 0 0 0 0 0 0
99 0 0 0 0 0 0 0 15 0 0
100 100 0 0 0 0 0 0 0 0 0

Total 1491 0 0 550 0 1077 0 361 589 404
Table 2: Replenishment plan

Figure 1 is the scatter plot of the replenishment plan.

4. (a) We can decide whether it is worthwhile to expand its maximum scale by the shadow prices
of maximum scale constraints. According to the calculation, we know that all the shadow
prices of maximum scale constraints are 0, which indicates that no maximum scale should be
expanded.

(b) To determine where to put more marketing budget to boost demands, we should calculate
shadow price of each store’s demand. The shadow prices are shown in Figure 2. According to
Figure 2, all the shadow prices of each demand are positive. That is, when there is one unit
of demand increase, the total cost would become higher. Then we should go a step further to
consider the unit price information of meat in each store.We can split the problem into two
parts.
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Figure 1: Replenishment plan.

Figure 2: Shadow price of each demand

i. If there are price information for each store, we can get the profit by subtracting replen-
ishment and maintaince cost from revenue. If the profit of the store become higher when
one unit of the store demand increase, then we should put more marketing budget on
that store. Otherwise, we shouldn’t do it.

ii. If there is no price information for each store, then we should put marketing budget on
three kinds of store.

A. The store with the shortest distance from DC.

B. The store with lowest maintaince cost DC.

C. The store with the shortest distance from DC and with lowest maintaince cost DC.

5. There are two methods.

(a) The first method is

i. Pick one DC with the lowest construction cost and check if it can meet the demand. If it
can, put it in set S and stop the algorithm. Otherwise, continue picking DCs into set S
according to the construction cost until all demands are fulfilled. Calculate the total cost
ci according to the DCs in set S.

ii. Exchange the highest-maintenance-cost DC in set S with the lowest-maintenance-cost DC
which is not in set S, and calculate the total cost cj according to DCs in set S. If cj
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is higher than ci, stop the algorithm. Otherwise, repeat the exchange process until cj is
lower than ci.

iii. Output set S.

(b) The second method is

i. We solve the problem with a model below

param D; #10

param S; #100

param Maintenance{i in 1..D}; #Maintenance cost

param Demand{j in 1..S};

param Scale{j in 1..S};

param ConstructionCost{i in 1..D};

param Distance{i in 1..D, j in 1..S};

var x{i in 1..D, j in 1..S}; #Replenishment plan

var Settle{i in 1..D};

minimize cost:

sum{i in 1..D}( Maintenance[i] * sum{j in 1..S}(x[i, j]))+

sum{i in 1..D, j in 1..S} (Distance[i, j] * x[i, j])+

sum{i in 1..D}(ConstructionCost[i] * Settle[i]);

#Maintenance cost + Replenishment cost + Construction Cost

subject to demandConstraint{j in 1..S}: #Demand = Replenishment plan

sum{i in 1..D}(x[i, j]) = Demand[j];

subject to ScaleConstraint{i in 1..D}: #Scale limitation

sum{j in 1..S}(x[i, j]) <=Settle[i]*Scale[i];

subject to nonnegX{i in 1..D, j in 1..S}: #non negative

x[i, j] >= 0;

ii. The solution is shown in Table 3.

Settle[i] value

1 0.820857

2 0

3 0.244624

4 0.476923

5 0

6 0.823439

7 0.530435

8 0.127419

9 0.843284

10 0.562421

Table 3: Solution of our model

iii. We cannot get binary answers to Settle variable by solving the LP. However, the up
coming chapter is about IP and we will learn more about it.
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