Operations Research, Spring 2017
 Suggested Solution for Pre-lecture Problems for Lecture 9

Solution providers: Share Lin
Department of Information Management National Taiwan University

1. (a) Yes.
(b) No. For example, let the set be F. Let $s=(0,-2)$ and $t=(2,0)$, therefore $s, t \in F$. Let $\lambda=0.5$ and the linear combination $\lambda s+(1-\lambda) t=(1,-1) \notin F$. Thus, F is not convex.
(c) No. For example, let $x_{1}=0, x_{2}=-1, \lambda=0.5$.

$$
f\left(\lambda x_{1}+(1-\lambda) x_{2}\right)=f(-0.5)=1.5 \geq 0.5=\lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right) .
$$

Therefore, f is not a convex function.
(d) Yes.
2. (a)

$$
\begin{aligned}
& \frac{\partial f(x)}{\partial x}=f^{\prime}(x)=6 x+2 \\
& \frac{\partial f^{\prime}(x)}{\partial x}=f^{\prime \prime}(x)=6 \geq 0
\end{aligned}
$$

Therefore, $f(x)$ is a convex function. We may find the global minimum by satisfying FOC. The global minimum is $f^{\prime}(x)=0 \Rightarrow x=-\frac{1}{3}$.
(b)

$$
\begin{gathered}
\frac{\partial f(x)}{\partial x}=f^{\prime}(x)=6 x^{2}-2 x-2 \\
\frac{\partial f^{\prime}(x)}{\partial x}=f^{\prime \prime}(x)=12 x-2
\end{gathered}
$$

Therefore, for $x \in\left[\frac{1}{6}, \infty\right), f(x)$ is a convex function. For $x \in\left[-1, \frac{1}{6}\right], f(x)$ is a concave function. By FOC, the global minimum for $x \in\left[\frac{1}{6}, \infty\right)$ is $x^{1}=\frac{1+\sqrt{13}}{6}$. For $x \in\left[-1, \frac{1}{6}\right]$, we may check the boundary of $f(x)$. Since $f(-1)=0<f\left(x^{1}\right), x^{1}$ is indeed the global minimum for $x \in[-1, \infty)$.
3. (a)

$$
\begin{array}{ll}
\max _{p \geq 0} & (p-10) D(p) \\
\text { s.t. } & D(p)=\left\{\begin{array}{lll}
160-2 p & \text { if } & p \in[0,40] \\
120-p & \text { if } & p \in[40,120] \\
0 & \text { if } & p \in(120, \infty)
\end{array}\right.
\end{array}
$$

(b) In this region, we want to max $f(x)=(p-10)(160-2 p)$.

By FOC, the optimal price is 45 . However, 45 is not in the region below 40 . Therefore, we may check the boundary and $f(40)=2400 \geq-1600=f(0)$. Thus, the optimal price below 40 is $p^{1}=40$.
(c) In this region, we want to $\max f(x)=(p-10)(120-p)$.

By FOC, the optimal price is $p^{2}=65$. Since p^{2} is feasible, it is optimal.
(d) Combining (b) and (c), we may find the optimal price by comparing p^{1} and p^{2}. Since $f\left(p^{1}\right)=$ $2400 \leq 3025=f\left(p^{2}\right)$, the optimal price is $p^{2}=65$ with profit 3025 .

