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Analytical methods for nonlinear programming

I We have learned some methods to tackle a nonlinear program.
I To check whether a program is a convex program.
I First-order condition.
I Feasibility of stationary points.
I Lagrangian relaxation.
I The KKT condition.

I These are analytical methods.
I We analyze the problem to get some properties (e.g., a necessary

condition for an optimal solution).
I We try to obtain an analytical solution (i.e., a function of parameters).
I Great for understanding the problem.
I Great for getting economic intuitions and managerial implications.
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Algorithms for nonlinear programming

I In many cases, analytical methods are not enough.
I We rely on numerical algorithms for obtaining a numerical solution.
I Typically the focus on an engineering application.

I To apply an algorithm, we need to first get the values of all parameters.

I An NLP algorithm typically runs in the following way:
I Iterative: The algorithm moves to a point in one iteration, and then

starts the next iteration starting from this point.
I Repetitive: In each iteration, it repeat some steps.
I Greedy: In each iteration, it seeks for some “best” thing achievable in

that iteration.
I Approximation: Relying on first-order or second-order approximation

of the original program.
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Limitations of NLP algorithms

I NLP algorithms certainly have their limitations.

I It may fail to converge.
I An algorithm converges to a solution if further iterations do not modify

the current solution “a lot.”
I Sometimes an algorithm may fail to converge at all.

I It may be trapped in a local optimum.
I A serious problem for nonconvex programs.
I The starting point matters.
I Some algorithms play some tricks to “try” several local optima.

I It (typically) requires the domain to be continuous and connected.
I A nonlinear integer program is very hard to solve.

I We will point out these difficulties.
I Remedies are beyond the scope of this course.

Algorithms for Nonlinear Programming 5 / 26 Ling-Chieh Kung (NTU IM)



Overview Gradient descent Newton’s method

Assumptions

I In today’s lecture, we will only solve unconstrained NLP.

I We will solve
min
x∈Rn

f(x)

where f(·) is a twice-differentiable function.

I We do not assume that f(·) is convex.
I If it is, our algorithms will (most likely) attains a global minimum.
I If it is not, a local minimum may be found.
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Gradient descent

I We first introduce the
gradient descent method.

I Given a current solution
x ∈ Rn, consider its gradient

Of(x) =


∂f(x)
∂x1

...
∂f(x)
∂xn

 .
I The gradient is an
n-dimensional vector. We
may try to “improve” our
current solution by moving
along this direction.

(http://underflow.fr/wp-
content/uploads/2014/03/parabola-floor.png)
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Gradient is an increasing direction

I Is the gradient an improving direction?

Proposition 1

For a twice-differentiable function f(x), its gradient Of(x) is an
increasing direction, i.e., f(x+ aOf(x)) > f(x) for all a > 0 that is
small enough.

Proof. Recall that

lim
a→0

f(x+ ad)− f(x)

a
= dOf(x).

Therefore, we have lima→0
f(x+aOf(x))−f(x)

a = Of(x)TOf(x) > 0, which
means that if a is small enough, f(x+aOf(x)) is greater than f(x).

I In fact the gradient is the fastest increasing direction.
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Gradient is an increasing direction

I Given that the gradient is an increasing direction, we should move
along its opposite direction (for a minimization problem).

I Therefore, given a current solution x:
I In each iteration we update it to

x− aOf(x)

for some value a > 0. a is called the step size.
I We stop when the gradient of a current solution is 0.

I Question: How to choose an appropriate value of a?

I Before we answer this question, let’s see an example.
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A bad step size can be very bad

I Let’s solve

min
x∈R2

f(x) = x21 + x22.

I Suppose we starts at x0 = (1, 1).
I The gradient in general is Of(x) = (2x1, 2x2).
I The gradient at x0 is Of(x0) = (2, 2).

I If we set a = 1
2 , we will move from x0 to

x1 = (1, 1)− 1
2 (2, 2) = (0, 0). Optimal!

I If we set a = 1, we will move to
x1 = (1, 1)− (2, 2) = (−1,−1).
I The gradient at x1 is Of(x1) = (−2,−2).
I We move to x2 = (−1,−1)− (−2,−2) = (1, 1).
I The algorithm does not converge.
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Maximizing the improvement

I How to choose a step size?

I We may instead look for the largest improvement.
I Along our improving direction −Of(x), we solve

min
a≥0

f(x− aOf(x))

to see how far we should go to reach the lowest point along this direction.

I We now may describe our gradient descent algorithm.

I Step 0: Choose a starting point x0 and a precision parameter ε > 0.

I Step k + 1:
I Find Of(xk).
I Solve ak = argmina≥0 f(xk − aOf(xk)).
I Update the current solution to xk+1 = xk − akOf(xk),
I If ||Of(xk+1)|| < ε, stop; otherwise let k become k + 1 and continue.1

1For x ∈ Rn, ||x|| =
√

x2
1 + · · ·+ x2

n.
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An example

I Let’s solve min f(x) = 4x21 − 4x1x2 + 2x22.
I The optimal solution is x∗ = (0, 0).
I We have Of(x) = (8x1 − 4x2,−4x1 + 4x2)

I Step 0: x0 = (2, 3). f(x0) = 10.

I Step 1:
I Of(x0) = (4, 4).
I a0 = argmina≥0 f(x0 − aOf(x0)), where

f(x0 − aOf(x0)) = f(2− 4a, 3− 4a)

= 32a2 − 32a+ 10.

It follows that a0 = 1
2
.

I x1 = x0 − a0Of(x0) = (2, 3)− 1
2
(4, 4) = (0, 1).

Note that f(x1) = 2.
I ||Of(x1)|| = ||(−4, 4)|| = 4

√
2.
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An example

I Step 2:
I Of(x1) = (−4, 4).
I a1 = argmina≥0 f(x1 − aOf(x1)), where

f(x1 − aOf(x1)) = f(0 + 4a, 1− 4a)

= 160a2 − 32a+ 2.

It follows that a1 = 1
10

.
I x2 = x1 − a1Of(x1) = (0, 1)− 1

10
(−4, 4) =

( 2
5
, 3
5
). Note that f(x2) = 2

5
.

I ||Of(x2)|| = ||( 4
5
, 4
5
)|| = 4

√
2

5
.
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Newton’s method

I The gradient descent method is a first-order method.
I It relies on the gradient to improve the solution.

I A first-order method is intuitive, but sometimes too slow.

I A second-order method relies on the Hessian to update a solution.

I We will introduce one second-order method: Newton’s method.

I Let’s start from Newton’s method for solving a nonlinear equation.
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Newton’s method for a nonlinear equation

I Let f : R→ R be differentiable. We want to
find x̄ satisfying f(x̄) = 0.

I For any xk, let

fL(x) = f(xk) + f ′(xk)(x− xk)

be the linear approximation of f at xk.
I This is the tangent line of f at xk or the

first-order Taylor expansion of f at xk.

I We move from xk to xk+1 by setting

fL(xk+1) = f(xk) + f ′(xk)(xk+1 − xk) = 0.

I We will keep iterating until |f(xk)| < ε or
|xk+1 − xk| < ε for some predetermined ε > 0.

Algorithms for Nonlinear Programming 17 / 26 Ling-Chieh Kung (NTU IM)



Overview Gradient descent Newton’s method

Newton’s method for single-variate NLPs

I Let f be twice differentiable. We want to find x̄ satisfying f ′(x̄) = 0.

I For any xk, let

f ′L(x) = f ′(xk) + f ′′(xk)(x− xk)

be the linear approximation of f ′ at xk.

I To approach x̄, we move from xk to xk+1 by setting

f ′L(xk+1) = f ′(xk) + f ′′(xk)(xk+1 − xk) = 0.

I We will keep iterating until |f ′(xk)| < ε or |xk+1 − xk| < ε for some
predetermined ε > 0.

I Note that f ′(x̄) does not guarantee a global minimum.
I That is why showing f is convex is useful!
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Another interpretation
I Let f be twice differentiable. We want to find x̄ satisfying f ′(x̄) = 0.
I For any xk, let

fQ(x) = f(xk) + f ′(xk)(x− xk) +
1

2
f ′′(xk)(x− xk)2

be the quadratic approximation of f at xk.
I This is the second-order Taylor expansion of f at xk.

I We move from xk to xk+1 by moving to the global minimum of the
quadratic approximation, i.e.,

xk+1 = argmin
x∈R

f(xk) + f ′(xk)(x− xk) +
1

2
f ′′(xk)(x− xk)2,

I Differentiating the above objective function with respect to x, we have

f ′(xk) + f ′′(xk)(xk+1 − xk) = 0 ⇔ xk+1 = xk − f ′(xk)

f ′′(xk)
.
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Example: the NLP

I Let

f =
KD

x
+
hx

2
,

where K = 5, D = 500, and h = 0.24.

I The global minimum is

x∗ =

√
2KD

h
≈ 144.34.
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Example: quadratic approximation

I At any xk, the quadratic approximation is

f(xk) + f ′(xk)(x− xk) +
1

2
f ′′(xk)(x− xk)2

=

(
KD

xk
+
hxk

2

)
+

(
−KD
(xk)2

+
h

2

)
(x− xk)

+
1

2

(
2KD

(xk)3

)
(x− xk)2.

I E.g., at x0 = 80, it is (approximately)

40.85− 0.27(x− 80) + 0.0098(x− 80)2.
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Example: one iteration
I At any xk, the quadratic approximation is(

KD

xk
+
hxk

2

)
+

(
−KD
(xk)2

+
h

2

)
(x− xk)

+
1

2

(
2KD

(xk)3

)
(x− xk)2.

I Its global minimum xk+1 satisfies(
−KD
(xk)2

+
h

2

)
+

(
2KD

(xk)3

)
(xk+1 − xk) = 0.

I E.g., at x0 = 80, we have

−0.27 + 0.0098(x1 − 80) = 0,

i.e., x1 ≈ 101.71.
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Example: one more iteration

I Note that from xk we may simply
move to

xk+1 = xk −
−KD
(xk)2

+ h
2

2KD
(xk)3

.

I From x1 = 101.71, we will move to
x2 = 131.58.

I We get closer to x∗ = 144.34.
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Newton’s method for multi-variate NLPs

I Let f : Rn → R be twice differentiable.

I For any xk, let

fQ(x) = f(xk) + Of(xk)T(x− xk) +
1

2
(x− xk)TO2f(xk)(x− xk)

be the quadratic approximation of f at xk.
I Note that we use the Hessian O2f(xk).

I We move from xk to xk+1 by moving to the global minimum of the
quadratic approximation:

Of(xk) + O2f(xk)(xk+1 − xk) = 0,

i.e.,

xk+1 = xk −
[
O2f(xk)

]−1
Of(xk).
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Example

I Let’s minimize f(x) = x41 + 2x21x
2
2 + x42.

I The optimal solution is x∗ = (0, 0).

I Of(x) =

[
4x31 + 4x1x

2
2

4x21x2 + 4x32

]
and O2f(x) =

[
12x21 + 4x22 8x1x2

8x1x2 12x22 + 4x21

]
.

I Suppose that x0 = (b, b) for some b > 0.

I We have Of(x0) =

[
8b3

8b3

]
and O2f(x0) =

[
16b2 8b2

8b2 16b2

]
.

I Therefore, we have

x1 = x0 −
[
O2f(x0)

]−1

Of(x0)

=

[
b
b

]
− 1

192b2

[
16 −8
−8 16

] [
8b3

8b3

]
=

[
2
5
b

2
5
b

]
.

I In fact, we have xk =
(

( 2
5
)kb, ( 2

5
)kb
)

.
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Remarks

I For Newton’s method:
I Newton’s method does not have the step size issue.
I It does not need to solve for an “optimal” step size.
I It in many cases is faster.
I For a quadratic function, Newton’s method find an optimal solution in

one iteration.
I It may fail to converge for some functions.

I More issues in general:
I Convergence guarantee.
I Convergence speed.
I Non-differentiable functions.
I Constrained optimization.
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