Overview Gradient descent Newton’s method
00000 00000000 000000000000

Operations Research

Algorithms for Nonlinear Programming

Ling-Chieh Kung

Department of Information Management
National Taiwan University

| |
Algorithms for Nonlinear Programming 1/26 Ling-Chieh Kung (NTU IM)

Overview Gradient descent Newton’s method
©0000 00000000 000000000000

Road map

» Overview.
» Gradient descent.

» Newton’s method.

Algorithms for Nonlinear Programming 2/26 Ling-Chieh Kung (NTU IM)

Overview Gradient descent Newton’s method

0000 00000000 000000000000
: :

Analytical methods for nonlinear programming

» We have learned some methods to tackle a nonlinear program.
To check whether a program is a convex program.

First-order condition.

Feasibility of stationary points.

Lagrangian relaxation.

The KKT condition.

» These are analytical methods.

Yy Yy VY VY

» We analyze the problem to get some properties (e.g., a necessary
condition for an optimal solution).

» We try to obtain an analytical solution (i.e., a function of parameters).

» Great for understanding the problem.

» Great for getting economic intuitions and managerial implications.

| |
Algorithms for Nonlinear Programming 3/26 Ling-Chieh Kung (NTU IM)

Overview Gradient descent Newton’s method
[e]e] lele} 00000000 000000000000
: :

Algorithms for nonlinear programming

» In many cases, analytical methods are not enough.

» We rely on numerical algorithms for obtaining a numerical solution.
» Typically the focus on an engineering application.
» To apply an algorithm, we need to first get the values of all parameters.
» An NLP algorithm typically runs in the following way:
» Iterative: The algorithm moves to a point in one iteration, and then
starts the next iteration starting from this point.
» Repetitive: In each iteration, it repeat some steps.
» Greedy: In each iteration, it seeks for some “best” thing achievable in
that iteration.
» Approximation: Relying on first-order or second-order approximation
of the original program.

: :
Algorithms for Nonlinear Programming 4/26 Ling-Chich Kung (NTU IM)

Overview Gradient descent Newton’s method
[e]e]e] e} 00000000 000000000000
: :

Limitations of NLP algorithms

v

NLP algorithms certainly have their limitations.

v

It may fail to converge.
» An algorithm converges to a solution if further iterations do not modify
the current solution “a lot.”
» Sometimes an algorithm may fail to converge at all.

v

It may be trapped in a local optimum.
> A serious problem for nonconvex programs.
» The starting point matters.
> Some algorithms play some tricks to “try” several local optima.

v

Tt (typically) requires the domain to be continuous and connected.

> A nonlinear integer program is very hard to solve.

v

We will point out these difficulties.

» Remedies are beyond the scope of this course.

: :
Algorithms for Nonlinear Programming 5 /26 Ling-Chich Kung (NTU IM)

Overview Gradient descent Newton’s method

0000e 00000000 000000000000
: :

Assumptions

» In today’s lecture, we will only solve unconstrained NLP.

» We will solve

min f(z)

where f(-) is a twice-differentiable function.

» We do not assume that f(-) is convex.

» If it is, our algorithms will (most likely) attains a global minimum.
» If it is not, a local minimum may be found.

| |
Algorithms for Nonlinear Programming 6 /26 Ling-Chieh Kung (NTU IM)

Overview Gradient descent Newton’s method
00000 ©0000000 000000000000

Road map

» Overview.
» Gradient descent.

» Newton’s method.

Algorithms for Nonlinear Programming 7/26 Ling-Chieh Kung (NTU IM)

Overview Gradient descent Newton’s method
00000 O®@000000 000000000000

Gradient descent

» We first introduce the
gradient descent method.

» Given a current solution
z € R", consider its gradient

vf(x) =

» The gradient is an
n-dimensional vector. We
may try to “improve” our

. . (http://underflow.fr/wp-
current solution by moving content /uploads/2014/03/parabola-floor.png)

along this direction.

Algorithms for Nonlinear Programming 8 /26 Ling-Chieh Kung (NTU IM)

Overview Gradient descent Newton’s method

00000 0O0@00000 000000000000
: :

Gradient is an increasing direction

» Is the gradient an improving direction?

Proposition 1

For a twice-differentiable function f(x), its gradient V f(z) is an
increasing direction, i.e., f(x + aV f(x)) > f(z) for all a > 0 that is
small enough.

Proof. Recall that

lim 1@ _ 49).

f(z+ad) -
a

Therefore, we have lim,_, w = vf(z)Tvf(z) > 0, which
means that if a is small enough f(x +aV f(x)) is greater than f(z). O

> In fact the gradient is the fastest increasing direction.

| |
Algorithms for Nonlinear Programming 9/26 Ling-Chieh Kung (NTU IM)

Overview Gradient descent Newton’s method

00000 000@0000 000000000000
: :

Gradient is an increasing direction

> Given that the gradient is an increasing direction, we should move
along its opposite direction (for a minimization problem).

» Therefore, given a current solution x:

» In each iteration we update it to

z —aV f(z)
for some value a > 0. a is called the step size.

» We stop when the gradient of a current solution is 0.
» Question: How to choose an appropriate value of a?
» Before we answer this question, let’s see an example.

: :
Algorithms for Nonlinear Programming 10/ 26 Ling-Chich Kung (NTU IM)

Overview Gradient descent Newton’s method

00000 0000@000 000000000000
: :

A bad step size can be very bad

Let’s solve

v

2 2
min f(z) =y + 3.

» Suppose we starts at 29 = (1, 1).
» The gradient in general is V f(z) = (221, 222).
» The gradient at 2° is v £(2°) = (2,2).

> If we set a = %, we will move from z° to

= (1,1) - £(2,2) = (0,0). Optimal!
If we set a = 1, we will move to
' =(1,1) - (2,2) = (-1,-1).
» The gradient at z' is Vf(2') = (— -2).
» We move to 22 = (-1, -1) — (=2, -2) = (1,1).
» The algorithm does not converge

v

| |
Algorithms for Nonlinear Programming 11/26 Ling-Chieh Kung (NTU IM)

Overview Gradient descent Newton’s method

00000 00000800 000000000000
: :

Maximizing the improvement

v

How to choose a step size?

v

We may instead look for the largest improvement.
» Along our improving direction —V f(z), we solve

min f(z - avf(x))

to see how far we should go to reach the lowest point along this direction.

v

We now may describe our gradient descent algorithm.

v

Step 0: Choose a starting point 2° and a precision parameter ¢ > 0.
Step k + 1:

» Find v f(z").

» Solve ax = argmin,~, f(z¥ —avf(z")).

» Update the current ‘solution to 2" = 2* — ay, v f(zh),

» If ||V f(2"T1)|| < ¢, stop; otherwise let k become k + 1 and continue.”

'For z € R™, ||z|| = y/2% + - + 22.

: :
Algorithms for Nonlinear Programming 12 /26 Ling-Chich Kung (NTU IM)

v

Overview Gradient descent Newton’s method
00000 00000080 000000000000 |
|
An example
» Let’s solve min f(z) = 42 — 4dxy29 + 223
» The optimal solution is z* = (0, 0).
» We have Vf(z) = (8x1 — 4x2, —4x1 + 4x2)
A
» Step 0: 20 = (2,3). f(2°) = 10. a’
> Step 1:
» Vf(2°) = (4,4).
> ao = argmin,sg f(z° — av f(z?)), where
f(@® —avf(a®) = f(2 —4a,3 — 4a) 21
=32a” — 32a + 10.
It follows that ap = 3. "

» 2t =2% —aVf(z®) = (2,3) — 1(4,4) = (0,1).

Note that f(z') = 2.
> [[VF@Eh] = [1(-4,4)] = 4v2.

Algorithms for Nonlinear Programming 13 /26

|
Ling-Chieh Kung (NTU IM)

Overview Gradient descent

Newton’s method

| 00000 0000000e 000000000000 |
: :
An example
> Step 2: A
> Vf(a') = (—4,4). a’
> a1 = argmin,., f(z' —avf(z')), where
f(@' —avf(z")) = £(0+4a,1 — 4a)
= 160a® — 32a + 2.
2l
It follows that a; = 1—10 x?
» 2’ =a' —aVf(z') = (0,1) — 5(—4,4) = 3
(2,2). Note that f(z*) = 2. >
> 19£@)] = 1I(3, DIl = 22
: :
Algorithms for Nonlinear Programming 14 /26 Ling-Chieh Kung (NTU IM)

Overview Gradient descent Newton’s method
00000 00000000 000000000000

Road map

» Overview.
» Gradient descent.
» Newton’s method.

Algorithms for Nonlinear Programming 15 /26 Ling-Chieh Kung (NTU IM)

Overview Gradient descent Newton’s method
00000 00000000 0O®0000000000

Newton’s method

v

The gradient descent method is a first-order method.
> It relies on the gradient to improve the solution.

A first-order method is intuitive, but sometimes too slow.
A second-order method relies on the Hessian to update a solution.

We will introduce one second-order method: Newton’s method.

vV V. v v

Let’s start from Newton’s method for solving a nonlinear equation.

: :
Algorithms for Nonlinear Programming 16 /26 Ling-Chich Kung (NTU IM)

Overview Gradient descent Newton’s method

00000 00000000 OO®@000000000
: :

Newton’s method for a nonlinear equation

» Let f: R — R be differentiable. We want to
find Z satisfying f(Z) = 0.

» For any z¥, let

fr(@) = f(a*) + f'(a")(x — 2¥)

be the linear approximation of f at x*.
» This is the tangent line of f at z* or the
first-order Taylor expansion of f at z*.

k+1

» We move from z* to x by setting oz

frl@t) = fak) + £) - =00] froa

We will keep iterating until |f(x*)| < € or
|zF+1 — 2*| < € for some predetermined € > 0.

v

: :
Algorithms for Nonlinear Programming 17 /26 Ling-Chich Kung (NTU IM)

Overview Gradient descent Newton’s method

00000 00000000 000800000000
: :

Newton’s method for single-variate NLPs

> Let f be twice differentiable. We want to find Z satisfying f/(z) = 0.

» For any z¥, let
fr(@) = f'(=") + " (@*) (@ — 2*)

be the linear approximation of f’ at z*.

v

To approach Z, we move from z* to 2! by setting

P = FR) +) = o) = o0,

v

We will keep iterating until |f/(z*)| < € or [#F+1 — 2*| < € for some
predetermined € > 0.

v

Note that f/'(Z) does not guarantee a global minimum.
» That is why showing f is convex is useful!

: :
Algorithms for Nonlinear Programming 18 /26 Ling-Chich Kung (NTU IM)

Overview Gradient descent Newton’s method

00000 00000000 O000@0000000
: :

Another interpretation

> Let f be twice differentiable. We want to find Z satisfying f/(zZ) = 0.
» For any z¥, let

fal@) = FH) +) = a%) 4+ 3 f) @ — b

be the quadratic approximation of f at z*.
» This is the second-order Taylor expansion of f at z*.
» We move from z* to 2**! by moving to the global minimum of the
quadratic approximation, i.e.,

P = axgmin J(at) + /(M) (@ — 7)) -),
zeR 2

» Differentiating the above objective function with respect to x, we have
/(K
10,k 1ok (o k41 ky _ k+1 _ f'(@")
'@+ @)z -2 =0 & 2" = BN IEGE

: :
Algorithms for Nonlinear Programming 19 /26 Ling-Chich Kung (NTU IM)

Overview Gradient descent

00000 00000000

Newton’s method
000008000000

Example: the NLP

> Let
KD hx
f =—+ 5
T 2
where K =5, D =500, and h = 0.24.

» The global minimum is

o D i

70

40

10

50

100 150 200 250 300

Algorithms for Nonlinear Programming 20/26

Ling-Chieh Kung (NTU IM)

Overview Gradient descent Newton’s method

00000 00000000 000000@00000
: :

Example: quadratic approximation

» At any 2¥, the quadratic approximation is

10 20 30 40 50 60 70
1

Pty 4 £/ = a) 4 5))2

- (%Jrh%k) + (%Jrg)(x—x’“)
+%<%>(m—xk)2.

» E.g., at 2 = 80, it is (approximately)

/

0
I

T T T T T T
50 100 150 200 250 300

40.85 — 0.27(z — 80) + 0.0098(z — 80)*.

| |
Algorithms for Nonlinear Programming 21 /26 Ling-Chieh Kung (NTU IM)

Overview
00000

Gradient descent
00000000

Newton’s method
000000080000

Example: one iteration

» At any 2¥, the quadratic approximation is

(222 (582

+ %(%) (z — %)

» Its global minimum

k

1 satisfies

(1) (o

» E.g., at 2° = 80, we have

—0.27 + 0.0098(x* — 80) = 0,

ie., z! ~101.71.

10 20 30 40 50 60 70

0

et

T
50

T T T T T
100 150 200 250 300

Algorithms for Nonlinear Programming

22 /26

|
Ling-Chieh Kung (NTU IM)

Overview Gradient descent

00000 00000000

Newton’s method
00000000@000

Example: one more iteration

» Note that from z* we may simply

move to
—KD | h
ghL = gk @) T3
- 2K :
(z*)3

» From z! = 101.71, we will move to

2% = 131.58.
» We get closer to x* = 144.34.

70

50

40

30

10

1350 200 250 300

Algorithms for Nonlinear Programming

23 /26

Ling-Chieh Kung (NTU IM)

Overview Gradient descent Newton’s method

00000 00000000 000000000800
: :

Newton’s method for multi-variate NLPs

> Let f:R™ — R be twice differentiable.

» For any z¥, let
fo(x) = f(a*) + v f(@*)" (z — 2*) + %(x — ") TV f(ah) (@ - 2¥)

be the quadratic approximation of f at z*.

» Note that we use the Hessian v2f(z*).

» We move from z* to zF+!

quadratic approximation:

by moving to the global minimum of the

Vf(ah) + V() (@M - 2h) =0,

ie.,

'Y F(ah),

o R [v2f(xk)}

| |
Algorithms for Nonlinear Programming 24 /26 Ling-Chieh Kung (NTU IM)

Gradient descent Newton’s method

Overview
00000 00000000 000000000080
:

Example

» Let’s minimize f(x) = 2 + 22323 + z3.

» The optimal solution is z* = (0, 0).
4:51 + 4x1x2 5 . 1222 + 4232 8xr1x2
> V@)= [4z3zs + 423 } and V2 (x) = 8x1x2 1222 + 422

» Suppose that z° = (b,b) for some b > 0.
8b° 16b° 8b°
» We have vf(2°) = [S] and v2f(z°) = [8B 16b2]

» Therefore, we have

="~ [72 ") o)
]l 2102

» In fact, we have z* (()*b, (2)")

[SUISEGIIN)
[=al =)
_

|
Algorithms for Nonlinear Programming 25 /26 Ling-Chieh Kung (NTU IM)

Overview Gradient descent Newton’s method
00000 00000000 00000000000e

Remarks

» For Newton’s method:
» Newton’s method does not have the step size issue.
It does not need to solve for an “optimal” step size.
It in many cases is faster.
For a quadratic function, Newton’s method find an optimal solution in
one iteration.
» It may fail to converge for some functions.

vvyy

> More issues in general:
» Convergence guarantee.
» Convergence speed.
» Non-differentiable functions.
» Constrained optimization.

Algorithms for Nonlinear Programming 26 /26 Ling-Chieh Kung (NTU IM)

	Overview
	Gradient descent
	Newton's method

