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Introduction

I In the following weeks, we will study Linear Programming (LP).
I It is used a lot in practice.
I It also provides important theoretical properties.
I It is good starting point for all OR subjects.

I We will study:
I The basic properties.
I LP formulation.
I The simplex method for solving LPs.
I Conditions for feasibility, unboundedness, and optimality.
I Integer Programming.
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Basic ideas

Road map

I Basic ideas.

I LP formulation examples.

I Linearization techniques.
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Basic ideas

Basic elements of an LP

I A linear program (LP) is a mathematical program whose objective
function and constraints are all linear and variables are all fractional.

I In general, any LP can be expressed as

min f(x) =

n∑
j=1

cjxj (objective function)

s.t. gi(x) =

n∑
j=1

Aijxj ≤ bi ∀i = 1, ...,m (constraints)

xj ∈ R ∀j = 1, ..., n. (decision variable)

I Aijs: the constraint coefficients.
I bis: the right-hand-side values (RHSs).
I cjs: the objective coefficients.
I As a convention, we will ignore xj ∈ R in the sequel.
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Basic ideas

Transformation

I How about a maximization objective function?
I max f(x)⇔ min−f(x).

I How about equality or greater-than-or-equal-to constraint?
I gi(x) ≥ bi ⇔ −gi(x) ≤ −bi.
I gi(x) = bi ⇔ gi(x) ≤ bi and gi(x) ≥ bi (which is −gi(x) ≤ −bi).

I For example,

max x1 − x2 min −x1 + x2
s.t. −2x1 + x2 ≥ −3 ⇔ s.t. 2x1 − x2 ≤ 3

x1 + 4x2 = 5. x1 + 4x2 ≤ 5
−x1 − 4x2 ≤ −5.
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Basic ideas

Matrix representation of an LP

I An LP can also be expressed in the matrix representation:

min cx

s.t. Ax ≤ b.
I A ∈ Rm×n: the constraint matrix.
I b ∈ Rm: the RHS vector (a column vector).
I c ∈ Rn: the objective vector (a row vector).

I For example,

max x1 − x2

s.t. −2x1 + x2 ≥ 3
x1 + 4x2 = 5.

⇒ A =

 2 −1
1 −4
−1 4

 , b =

 −35
−5

 , c =
[
−1 1

]
.

I The matrix representation will be used a lot in this course.
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Basic ideas

Sign constraints

I For some reasons that will be clear in a couple weeks, we distinguish
between two kinds of constraints:
I Sign constraints: xi ≥ 0 or xi ≤ 0.
I Functional constraints: all others.

I For a variable xi:
I It is nonnegative if xi ≥ 0.
I It is nonpositive if xi ≤ 0.
I It is unrestricted in sign (urs.) or free if there is no sign constraint

for it.
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Basic ideas

Example

I Here is an example of LP:

min 2x1 + x2
s.t. x1 ≤ 10

x1 + 2x2 ≤ 12
x1 − 2x2 ≥ −8
x1 ≥ 0

x2 ≥ 0.
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Basic ideas

Extreme points

I We need to first define extreme points for a set:

Definition 1 (Extreme points)

For a set S, a point x is an extreme point if there does not exist a
three-tuple (x1, x2, λ) such that x1 ∈ S \ {x}, x2 ∈ S \ {x}, λ ∈ (0, 1),
and

x = λx1 + (1− λ)x2.
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Basic ideas

Local v.s. global optima

I Recall the following result from Nonlinear Programming:

Proposition 1

For a convex function over a convex feasible region, a local minimum
is a global minimum.

I For a concave function over a convex feasible region, a local maximum is
a global maximum.

Proposition 2

For any concave function that has a global minimum, there exists a
global minimum that is an extreme point.

I It is not “a global minimum must be an extreme point.”



Optimization, Fall 2013 – Introduction to Linear Programming 11 / 46

Basic ideas

Solving a linear program

I Now we know when we minimize f(·) over a convex feasible region F :
I If f(·) is convex, search for a local min.
I If f(·) is concave, search among the extreme points of F .

I How are these related to Linear Programming?

I We will show that, for any linear program:
I The feasible region is convex.
I The objective function is both convex and concave.

I Then the results will mean a lot to Linear Programming!
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Basic ideas

Solving a linear program

Proposition 3

The feasible region of a linear program is convex.

Proof. First, note that the feasible region of a linear program is the
intersection of several half spaces (each one is determined by an
inequality constraint) and hyperplanes (each one is determined by an
equality constraint). It is trivial to show that half spaces and
hyperplanes are always convex. It then remains to show that the
intersection of convex sets is convex, which is also trivial.
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Basic ideas

Solving a linear program

Proposition 4

A linear function is both convex and concave.

Proof. To show that a function f(·) is convex and concave, we need to
show that f(λx1 + (1− λ)x2) = λf(x1) + (1− λ)f(x2). Let
f(x) = c · x+ b be a linear function, c ∈ Rn, b ∈ R, then

f
(
λx1 + (1− λ)x2

)
= c ·

(
λx1 + (1− λ)x2

)
+ b

= λ(c · x1 + b) + (1− λ)(c · x2 + b)

= λf(x1) + (1− λ)f(x2).

Therefore, a linear function is both convex and concave.
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Basic ideas

Solving a linear program

I To solve a linear program, we only need to search for a local minimum.
I As long as we find a feasible improving direction, just move along

that direction.

I We only need to search among extreme points of the feasible region.
I We may keep moving until we reach the end of the feasible region.

I These two properties form the foundation of the graphical approach
for solving two-dimensional linear programs.

I They also allow us to use the simplex method for solving
n-dimensional linear programs.
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Basic ideas

Graphical approach

I For linear programs with only two decision variables, we may solve
them with the graphical approach.

I Consider the following example:

max 2x1 + x2
s.t. x1 ≤ 10

x1 + 2x2 ≤ 12
x1 − 2x2 ≥ −8
x1 ≥ 0

x2 ≥ 0.
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Basic ideas

Graphical approach

I Step 1: Draw the feasible region.

I Step 2: Draw an isocost line.
I All points on it have the same

objective value.
I isoprofit/isoquant line sometimes.
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Basic ideas

Graphical approach

I Step 3: Indicate the direction to
push the isocost line.
I The direction that increases the

objective value for a maximization
problem.

I Step 4: Push the isocost line to the
“end” of the feasible region.
I Stop when any further step makes

all points on the isocost line
infeasible.
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Basic ideas

Graphical approach

I Step 5: Identify the
binding constraints at the
optimal solution.

I Step 6: Set the binding constraints
to equalities and solve the linear
system for an optimal solution.
I In the example, the binding

constraints are x1 ≤ 10 and
x1 + 2x2 ≤ 12. Therefore, we solve[

1 0 10
1 2 12

]
→
[

1 0 10
0 2 2

]
→
[

1 0 10
0 1 1

]
and obtain an optimal solution
(x∗

1, x
∗
2) = (10, 1).

I Step 7: Plug in and find z∗, the
associated objective value.
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LP formulation examples

Road map

I Basic ideas.

I LP formulation examples.
I Resource allocation.
I Material blending.
I Production and inventory.

I Linearization techniques.
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LP formulation examples

Introduction

I It is important to learn how to model a practical situation as a linear
program.

I This process is typically called LP formulation or modeling.

I We will introduce three types of LP problems, demonstrate how to
formulate them, and discuss some important issues.
I Resource allocation, material blending, production and inventory.
I There are certainly many other types of LP problems.

I For large-scale problems, compact formulations are used.
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LP formulation examples

Resource allocation (1/3)

I We produce products to sell.

I Each product requires some resources. Resources are limited.

I We want to maximize the total sales revenue while ensuring resources
are enough.
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LP formulation examples

Resource allocation: the problem (2/3)

I We may produce desks and tables.1

I Producing a desk requires four units of wood, one hour of labor, and 30
minutes of machine time.

I Producing a table requires five units of wood, two hours of labor, and 20
minutes of machine time.

I We may sell everything we produce.

I For each day, we have
I Two workers, each works for eight hours.
I One machine that can run for eight hours.
I A supply of 36 units of wood.

I Desks and tables are sold at $800 and $600 per unit, respectively.

1Operations Research: Applications and Algorithms by W. Winston, 4th ed.
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LP formulation examples

Resource allocation: formulation (3/3)

I Let

x1 = number of desks produced in a day and

x2 = number of tables produced in a day.

I The complete formulation is

max
s.t.

800x1 + 600x2
4x1 + 5x2 ≤ 36 (wood)
x1 + 2x2 ≤ 16 (labor)

30x1 + 20x2 ≤ 480 (machine)

xi ≥ 0 ∀i = 1, 2

I Clearly define decision variables in front of your formulation.
I Write comments after the objective function and constraints.
I Do not forget nonnegativity constraints.
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LP formulation examples

Material blending (1/5)

I In some situations, we need to determine not only products to produce
but also materials to input.

I This is because we have some flexibility in making the products.

I For example, in making orange juice, we may use orange, sugar, water,
etc. Different ways of blending these materials results in different
qualities of juice.

I The goal is to save money (lower the proportion of expensive
materials) while maintaining quality.
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LP formulation examples

Material blending: the problem (2/5)

I We blend materials 1, 2, and 3 to make products 1 and 2.2

I The quality of a product, which depends on the proportions of these
three materials, must meet the standard:
I Product 1: at least 40% of material 1; at least 20% of material 2.
I Product 2: at least 50% of material 1; at most 30% of material 3.

I At most 100 kg of product 1 and 150 kg of product 2 can be sold.

I Prices for products 1 and 2 are $10 and $15 per kg, respectively.

I Costs for materials 1 to 3 are $8, $4, and $3 per kg, respectively.

I Amount of a product made equals the amount of materials input.

I We want to maximize the total profit.

2Operations Research: Applications and Algorithms by W. Winston, 4th ed.
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LP formulation examples

Material blending: decision variables (3/5)

I Let

x11 = kg of material 1 used for product 1,

x12 = kg of material 1 used for product 2, ...

x32 = kg of material 3 used for product 2.

I How to find the production quantities of products and the purchasing
quantities of materials?

Product 1 Product 2 Purchasing
quantity

Material 1 x11 x12 x11 + x12
Material 2 x21 x22 x21 + x22
Material 3 x31 x32 x31 + x32

Production x11 + x21 + x31 x12 + x22 + x32quantity
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LP formulation examples

Material blending: quality constraints (4/5)

I The objective function is

max 10(x11 + x21 + x31) + 15(x12 + x22 + x32)

− 8(x11 + x12)− 4(x21 + x22)− 3(x31 + x32)

= max 2x11 + 7x12 + 6x21 + 11x22 + 7x31 + x32.

I In product 1, how to guarantee at least 40% are material 1?

x11
x11 + x21 + x31

≥ 0.4.

I It is conceptually correct. However, it is nonlinear!

I Let’s fix the nonlinearity by taking the denominator to the RHS:

x11 ≥ 0.4(x11 + x21 + x31).

Though equivalent, they are just different.
I In total we have four quality constraints.
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LP formulation examples

Material blending: formulation (5/5)

I The complete formulation is

max 10(x11 + x21 + x31) + 15(x12 + x22 + x32)

− 8(x11 + x12)− 4(x21 + x22)− 3(x31 + x32)

s.t. x11 ≥ 0.4(x11 + x21 + x31), x21 ≥ 0.2(x11 + x21 + x31)

x12 ≥ 0.5(x12 + x22 + x32), x13 ≤ 0.3(x12 + x22 + x32)

x11 + x21 + x31 ≤ 100, x12 + x22 + x32 ≤ 150

xij ≥ 0 ∀i = 1, ..., 3, j = 1, 2.

I We may need to redefine decision variables when necessary.
I We may use multi-dimensional variables.
I We need to linearize nonlinear constraints or objective functions.
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LP formulation examples

Production and inventory (1/6)

I When we are making decisions, we may need to consider what will
happen in the future.

I This creates multi-period problems.

I In particular, in many cases products produced today may be stored
and then sold in the future.
I Maybe production is cheaper today.
I Maybe the price is higher in the future.

I So the production decision must be jointly considered with the
inventory decision.
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LP formulation examples

Production and inventory: the problem (2/6)

I Suppose we are going to produce and sell a product in four days.3

I For each day, there are different amounts of demands to fulfill.
I Days 1, 2, 3, and 4: 100, 150, 200, and 170 units, respectively.

I The unit production costs are different for different days:
I Days 1, 2, 3, and 4: $9, $12, $10, and $12 per unit, respectively.

I The prices are all fixed. So maximizing profits is the same as
minimizing costs.

I We may store a product and sell it later.
I The inventory cost is $1 per unit per day.
I E.g., producing 620 units on day 1 to fulfill all demands costs

9× 620 + 1× 150 + 2× 200 + 3× 170 = 6640 dollars.

3Operations Research: Applications and Algorithms by W. Winston, 4th ed.
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LP formulation examples

Production and inventory: the problem (3/6)

I Timing:

I Beginning inventory + production − sales = ending inventory.
I Inventory costs are assessed according to ending inventory.
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LP formulation examples

Production and inventory: variables (4/6)

I We need to determine the production quantities. Let

xt = production quantity of day t, t = 1, ..., 4.

I Is that information enough?

I So we also need to determine the inventory quantities. Let

yt = ending inventory of day t, t = 1, ..., 4.

I It is important to specify “ending”!
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LP formulation examples

Production and inventory: formulation (5/6)

I The objective function is

min 9x1 + 12x2 + 10x3 + 12x4 + y1 + y2 + y3 + y4.

I We need to keep an eye on our inventory:
I Day 1: x1 − 100 = y1.
I Day 2: y1 + x2 − 150 = y2.
I Day 3: y2 + x3 − 200 = y3.
I Day 4: y3 + x4 − 170 = y4.

I This is typically called the inventory balancing constraint.
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LP formulation examples

Production and inventory: formulation (6/6)

I The complete formulation is

min 9x1 + 12x2 + 10x3 + 12x4 + y1 + y2 + y3 + y4

s.t. x1 − 100 = y1

y1 + x2 − 150 = y2

y3 + x3 − 200 = y3

y3 + x4 − 170 = y4

xt, yt ≥ 0 ∀t = 1, ..., 4.

I Is it guaranteed to satisfy all the demands?

I The main idea is to use inventory variables to connect multiple
periods. Otherwise periods will be unconnected.

I In general, some constraints may be redundant.



Optimization, Fall 2013 – Introduction to Linear Programming 35 / 46

Linearization techniques

Road map

I Basic ideas.

I LP formulation examples.

I Advanced formulation techniques
I Compact formulation.
I Linearization.
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Linearization techniques

Compact formulations (1/5)

I Most problems in practice are of large scales.
I The number of variables and constraints are huge.

I Many variables can be grouped together:
I E.g., xt = production quantity of day t, t = 1, ..., 4.

I Many constraints can be grouped together:
I E.g., xt ≥ 0 for all t = 1, ..., 4.

I In modeling large-scale problems, we must use compact
formulations to enhance readability and efficiency.

I In general, we may use the following three instruments:
I Indices (i, j, k, ...).
I Summation (

∑
).

I For all (∀).
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Linearization techniques

Production and inventory (2/5)

I The problem:
I We have four periods.
I In each period, we first produce and then sell.
I Unsold products become ending inventories.
I Want to minimize the total cost.

I Indices:
I Because things will repeat in each period, it is natural to use an index

for periods. Let t ∈ {1, ..., 4} be the index of periods.

I The objective function:
I min 9x1 + 12x2 + 10x3 + 12x4 + y1 + y2 + y3 + y4.
I min 9x1 + 12x2 + 10x3 + 12x4 +

∑4
t=1 yt.

I Denote the unit cost on day t as Ct, t = 1, ..., 4:

min

4∑
t=1

(Ctxt + yt).
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Linearization techniques

Compacting the constraints (3/5)
I The original constraints:

I x1 − 100 = y1, y1 + x2 − 150 = y2, y2 + x3 − 200 = y3, y3 + x4 − 170 = y4.

I Denote the demand on day t as Dt, t = 1, ..., 4.

I The compact constraint:
I For t = 2, ..., 4 : yt−1 + xt −Dt = yt.
I We cannot apply this to day 1 as y0 is undefined!
I For t = 1, x1 −Dt = y1.

I To group the four constraints into one compact constraint, we add y0
as a decision variable:

yt = ending inventory of day t, t = 0, ..., 4.

I Then the set of inventory balancing constraints are written as

yt−1 + xt −Dt = yt ∀t = 1, ..., 4

I Certainly we need to set up the initial inventory: y0 = 0.
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Linearization techniques

The complete compact formulation (4/5)

I The compact formulation is

min

4∑
t=1

(Ctxt + yt)

s.t. yt−1 + xt −Dt = yt ∀t = 1, ..., 4

y0 = 0

xt, yt ≥ 0 ∀t = 1, ..., 4.

I Do not forget “∀t = 1, ..., 4”! Without that, the formulation is wrong.
I Nonnegativity constraints for multiple sets of variables can be combined

to save some “≥ 0”.

I One convention is to:
I Use lowercase letters for variables (e.g., xt).
I Use uppercase letters for parameters (e.g., Ct).
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Linearization techniques

Parameter declaration (5/5)

I When creating parameter sets, it is fine to

denote Ct as the unit production cost on day t, t = 1, ..., 4.

I Do not need to specify values.
I Need to specify range through indices.

I It is also fine to

Denote C = [9 12 10 12] as the production cost vector.

I Ct is naturally its tth element and has no ambiguity.
I The values should be indicated when defining the name.

I In either case, we should indicate the physical meaning.
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Linearization techniques

Maximum and minimum functions (1/6)

I Maximum and minimum functions are nonlinear.

I If we are lucky enough, they can be linearized for us to construct an
equivalent linear formulation.

I As the first example, how would you linearize

max min{x1, x2}?
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Linearization techniques

Maximum and minimum functions (2/6)

I First attempt:

max y

s.t. y = min{x1, x2}.

I Some observations:

y = min{x1, x2} ⇒ y ≤ x1, y ≤ x2
y ≤ x1, y ≤ x2 ⇒ y ≤ min{x1, x2}

I Second attempt:

max y

s.t. y ≤ x1, y ≤ x2.

I The feasible region becomes larger. The two programs are not identical.
I But at any optimum, either y = x1 or y = x2. Why?
I So the two programs are equivalent.
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Linearization techniques

Maximum and minimum functions (3/6)

I This technique can be applied on more general LPs.

I The following two problems are equivalent:

max min {x1, 0}
s.t. x1 + x2 = 1

xi ≥ 0 ∀i = 1, 2.
↔

max y
s.t. y ≤ x1

y ≤ 0
x1 + x2 = 1
xi ≥ 0 ∀i = 1, 2.

I This technique works only for “max min” and “min max”. For
“min min” and ”max max, it does not work!
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Linearization techniques

Absolute value functions (4/6)

I An absolute value function can be viewed as a special maximum
function: |x| = max{x,−x}. So the above technique applies.

I The following three problems are equivalent:

min |x1|
s.t. x1 + x2 = 1

xi ≥ 0 ∀i = 1, 2
↔

min max{x1,−x1}
s.t. x1 + x2 = 1

xi ≥ 0 ∀i = 1, 2

↔

min y
s.t. y ≥ x1

y ≥ −x1
x1 + x2 = 1
xi ≥ 0 ∀i = 1, 2.

I This technique works only for “max min” and “min max”. For
“min min” and ”max max, it does not work!
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Linearization techniques

Locating fire stations (5/6)

I Consider the following problem of locating the fire station.4

Monroe County is trying to determine where to place one
county fire station. The locations of the county’s four major
towns are given in the following coordinates measured in miles.
Town 1 is at (10, 20); town 2 is at (60, 20); town 3 is at (40, 30);
town 4 is at (80, 60). Town 1 averages 20 fires per year; town 2,
30 fires; town 3, 40 fires; and town 4, 25 fires. The county
wants to build the fire station in a location that minimizes the
average “distance to travel” of a fire engine. Since most roads
run in either an east-west or a north-south direction, we assume
that the fire engine can only do the same. Thus, if the fire
station were located at (30, 40) and a fire occurred at town 4, the
“distance to travel” is |80− 30|+ |60− 40| = 70 miles to the fire.
Formulate a linear program that determines where the fire
station should be located.

4Operations Research: Applications and Algorithms by W. Winston, 4th ed.
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Linearization techniques

Locating fire stations (6/6)

I Let (x, y) be the location of the fire station.

I Let (Xi, Yi) be the location of the city i and Fi be the frequency of
having fire in city i, i = 1, ..., 4.

I We solve

min

4∑
i=1

Fi

(
|x−Xi|+ |y − Yi|

)
.

I This can be linearized by introducing new variables wi and zi such that
wi = |x−Xi| and zi = y − Yi:

min
∑

i Fi(wi + zi)

s.t. wi ≥ x−Xi ∀i = 1, ..., 4

wi ≥ Xi − x ∀i = 1, ..., 4

zi ≥ y − Yi ∀i = 1, ..., 4

zi ≥ Yi − y ∀i = 1, ..., 4.
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