Programming Design, Spring 2015
Homework 4

Instructor: Ling-Chieh Kung
Department of Information Management
National Taiwan University

To submit your work, please upload a PDF file for Problems 1 and 2 and two CPP files for Problems
3 and 4 to PDOGS at http://pdogs.ntu.im/judge/. Each student must submit her/his individual work.
No hard copy. No late submission. The due time of this homework is 8:00am, March 30, 201}.
Please answer in either English or Chinese.

Before you start, please read Sections 5.1-5.7 and 6.5-6.8 of the textbook.!

Problem 1

(10 points) Use your own words to explain why in C++ the function signature does not include the
function return type. You may want to give an example to show the potential problems if the return
type is included.

Problem 2

(15 points; 5 points each) Consider the following implementation of a function that determines whether
a given integer is a prime number:

void prime(int n)
{
bool isPrime = true;
for(int 1 = 2; i * i <= n; i++)

{
if(n % i == 0)
{
isPrime = false;
break;
}
}
cout << isPrime << "\n";

In the main function, one may invoke prime() with an integer argument to see whether that argument
is a prime. If it is, we see 1 on the screen; otherwise, we see 0.

(a) This function couples calculation with the output process. Explain why we say that they are
coupled.

(b) Modify the function to decouple calculation with the output process. Briefly explain how to use
the new implementation.

(¢) Modify the function by removing the break statement. Use two return statements instead. Briefly
explain which one do you prefer.

1The textbook is C++ How to Program: Late Objects Version by Deitel and Deitel, seventh edition.

Problem 3

(45 points) Recall the knapsack problem introduced in Homework 3. For a knapsack instance with n
items, a solution is a n-dimensional binary vector (x1,xa, ..., x,), where ; € {0,1} for all : = 1,...,n.
We say that a solution y is a neighbor of a solution x if there exist an index j € {1,2,...,n} such that

yj=1-=z; and y; ==z Vi#]j.
For example, for a five-item instance, the solution (0,1,1,0, 1) has five neighbors
(1,1,1,0,1), (0,0,1,0,1), (0,1,0,0,1), (0,1,1,1,1), and (0,1,1,0,0).

In general, an n-dimensional solution has n neighbors. Of course, some of these neighbors may be
infeasible. Given a solution, you may want to know whether there is any neighbor that is better than
the current one. If this is the case, obviously the current one is not an optimal solution.

To compare two solutions, it is possible that the two solutions are equally good, i.e., they are both
feasible and generating the same value. In this case, we say that solution z is prior to solution y if x
selects more low-indexed items. More precisely, z is prior to y if

n n
Z 2"l > Z 2y,
i=1 i=1

For example, the solution (0, 1,1,0,0) is prior to (0,1,0,0,1).

In this problem, you will be given a solution of a knapsack instance. Among all its neighbors and
itself, you need to find the best one, i.e., a feasible one whose value is the highest among these solutions.
If there are more than one solution that are equally good, we define the best one as the one that that is
best and prior to all other equally good solutions in the considered pool.?

As an example, consider the following knapsack instance

max 2x1 + 4x9 + dx3 + 34
s.t. 2wy + 3wy +4w3+3x4 <9 (1)
z; €{0,1} Vi=1,..,4.

For the solution (0,0,1,1), there are four neighbors: (1,0,1,1), (0,1,1,1), (0,0,0,1), and (0,0,1,0).
Their total weights are 9, 10, 3, and 4, respectively. This implies that the second neighbor is infeasible.
Among all feasible neighbors and the solution (0,0, 1,1) itself, the first neighbor is the best (with the
highest value 10). Therefore, your program should report (1,0,1,1) as the output.

Input/output formats

There are 10 input files. In each file, there are 4 lines of values. The first three lines define a knapsack
instance in the same way as in Homework 3. The fourth line contains a sequence of n binary values
x; € {0,1}, i = 1,...,n followed by a newline character. Each two values are separated by a white space.
This line defines a knapsack solution. You may assume that the given solution is feasible.

Given the input file, you output n binary values in a single line in your output file to represent the
best solution among the given solution and its neighbors. The ith value you output is the ith value of
that best solution. Each two values should be separated by a white space.

What should be in your source file

Your .cpp source file should contain C++ codes that will both read testing data and complete the above
task. Moreover, you MUST implement a function

2If you want to calculate 2%, be aware of overflow!

int knapsackValue(const int value[], const int weight[], int B, int n,
const bool sol[])

which calculates the total value generated by a given solution. The first four parameters are the values
of items, weights of items, the knapsack size, and the number of items; the last parameter is the given
solution. If the given solution is feasible, return its value; otherwise, return —1. Your main function
should repeatedly invoke this function to complete the above task. For this problem, you are NOT
allowed to use techniques not covered in lectures. You should write relevant comments for your codes.

Grading criteria

e 30 points for this program will be based on the correctness of your output. PDOGS will compile
your program, feed testing data into your program, and check the correctness of your outputs.
Each correct output gives you 3 points.

e 5 points for this program depends on whether you declare the required function. If you fail to do
that, you lose these 5 points.

e 10 points for this program will be based on how you write your program, including the logic and
format. Please try to write a robust, efficient, and easy-to-read program.

Problem 4

(30 points) Consider the knapsack problem again. The knapsack problem is a well-known NP-hard
problem, which means that most researchers in the world tend to believe that there is no efficient way to
find an optimal subset of items. In this case, people may design some heuristic algorithms to generate
a hopefully near-optimal feasible solution. Many heuristic algorithms are greedy, i.e., they apply some
myopic search principles to improve a given solution locally but may fail to find a global solution.

In this problem, you will implement a heuristic algorithm based on the concept of neighbors introduced
in Problem 3. The algorithm runs in the following way:

initialize two knapsack solutions = 0 and y = 0 (both selecting no item)
do
let be y
let y be the best solution among z’s neighbors and x
while y # x
output y

According to the

As an example, suppose that you are working on the knapsack instance in (1).
1,0), and finally stops

algorithm, you should start from (0,0,0,0), then moves to (0,0,1,0), then (0, 1,1,
at (1,1,1,0). Your program should output (1,1, 1,0) as its reported solution.?

In short, you start from the solution selecting no item. You keep moving to a better candidate which
is the best among all your neighbor. You stop when none of your neighbor gives you any improvement.
Note that the task inside the while loop has been done in Problem 3! This means that you may finish
this problem by reusing your codes for Problem 3. Would you make those codes a function and invoke
it repeatedly?

Input/output formats

There are 10 input files. In each file, there are 3 lines of values. They define a knapsack instance in the
same way as in Homework 3.

3For this instance, we are lucky that this algorithm finds an optimal solution. Will we always be lucky to find an optimal
solution? In general, no. It is well known that there is a pseudopolynomial-time dynamic programming algorithm that can
solve the knapsack problem. For this problem, however, you are required to implement the given algorithm.

Given the input file, you output n binary values in a single line in your output file to represent the
solution you find with the given algorithm. The ith value you output is the ith value of your reported
solution. Each two values should be separated by a white space.

What should be in your source file

Your .cpp source file should contain C++ codes that will both read testing data and complete the above
task. For this problem, you are NOT allowed to use techniques not covered in lectures. You should write
relevant comments for your codes.

Grading criteria

30 points for this program will be based on the correctness of your output. PDOGS will compile your
program, feed testing data into your program, and check the correctness of your outputs. Each correct
output gives you 3 points.

