
Programming Design, Spring 2015

Homework 10
Instructor: Ling-Chieh Kung

Department of Information Management
National Taiwan University

To submit your work, please upload a PDF file for Problem 1 and two CPP files for Problems 2 and
3 (optional) to PDOGS at http://pdogs.ntu.im/judge/. Each student must submit her/his individual
work. No hard copy. No late submission. The due time of this homework is 8:00am, May 25, 2014.
Please answer in either English or Chinese.

Before you start, please read Chapter 11 of the textbook.1 The TA who will prepare the solution for
this homework is Shelley Sun.

Problem 1

(10 points) Consider page 34 of the slides for operator overloading. Use your own words to explain why
operator+ returns an object (const MyVector), not a reference (const MyVector&).

Problem 2

(90 points) One very popular tool for statistical analysis is the R programming language.2 In R, one may
very easily create vectors and matrices. For example, to create a vector x = (1, 2, 3), the instruction is
x <- c(1, 2, 3) (the function c() will concatenate multiple inputs into one single vector literal). To
later modify x to (5, 4, 3, 2, 1), the instruction is nothing but x <- c(5, 4, 3, 2, 1). If there exists
another vector y = (5, 0, 1, 1), one may also create a new vector z by executing z <- y.

If you think about these instructions, you quickly realize that each vector in R is just like a C++
object, and that assignment operator <- is overloaded for R vectors so that the right-hand-side (RHS)
value of <- can be either a vector literal (like c(1, 2, 3)) or a vector object (like y). Besides the
assignment operator, the indexing operator is also overloaded. We may use z[2] to access the second
element of z, whose value is 0. Note that the indices of R vectors fit out common sense; you do not need
to worry about the cumbersome i or i− 1 issue in C++.

Most arithmetic operators have also been overloaded. R defines some vector arithmetic operations
in an interesting way: recycling (which is the word R uses to mean repeating). Consider the addition
operation as an example. Let x1 = (1, 2, 3, 4, 5) and x2 = (8, 4, 2, 1, 0), naturally x1 + x2 = (9, 6, 5, 5, 5).
What if we have x3 = (9, 1, 5) and we want to calculate x1 + x3? In this case, R calculate the outcome
in two steps:

1. Recycle x3 (because it is shorter) into x′3 to make x′3 as long as x1. The elements in x3 would be
repeated and appended to x3 until x′3 is long enough. In this example, x′3 would be (9, 1, 5, 9, 1).

2. Add x1 and x′3, the recycled x3, to get (10, 3, 8, 13, 6).

Therefore, the outcome of x1 + x3 is defined to be (10, 3, 8, 13, 6). For subtraction, it is the same. For
example, if y1 = (9, 9, 9, 9, 9, 9, 9, 9, 9) and y2 = (1, 2, 4, 0), we have y1 − y2 = (8, 7, 5, 9, 8, 7, 5, 9, 8). For
comparison operators like less-than, greater-than, or equal-to, the same recycling rule is still applied:
The shorter vector is recycled to be as long as the longer one, and then a natural pairwise comparison
gives the result. For example, z1 = (1, 2,−1, 4, 1) < z2 = (2, 3) is false and z3 = (1, 2,−1, 0, 1) < z2 is
true.

In this problem, you will be implementing these vector arithmetic with C++ operator overloading.
You will need to create a class RecylcingVector with overloaded operators =, +, -, [], <, >, and ==.

1The textbook is C++ How to Program: Late Objects Version by Deitel and Deitel, seventh edition.
2http://www.r-project.org/.

1



The codes you need to write will be quite similar with the codes on the slides. In fact, you are welcome
to modify the class MyVector given by the instructor to complete this problem.3

Input/output formats

There are 30 input files. In each file, there are several lines. Each line start with a single English letter,
which may be N, A, C, I, S, and M. These letters corresponds to the following events:

• If the first letter is “N” (for “new”), it will be followed by an English lowercase letter c, a positive
integer n, and then n integers x1, x2, ..., and xn. This will create a new vector c = (x1, x2, ..., xn).
Note that the character c is the name of the vector, and thus there will be at most 26 vectors when
you run your program.

• If the first letter is “A” (for “assignment”), it will be followed by an English lowercase letter c, a
positive integer n, and then n integers x1, x2, ..., and xn. This will assign (x1, x2, ..., xn) to the
vector c (and remove all the original values in c) even if n is different from the current dimension
of c. You may assume that c has been created with an appropriate N event.

• If the first letter is “C” (for “comparison”), it will be followed by a character x that is L (for
“less than”), G (for “greater than”), or E (for “equal to”), an English lowercase letter c1, and
another English lowercase letter c2. This will print out the result of c1 < c2, c1 > c2, and c1 = c2,
respectively. If it is true, please print out 1; otherwise, please print out 0. Each output number
should occupy a single line.

• If the first letter is “I” (for “indexing”), it will be followed by an English lowercase letter c, an
integer i, and an integer v. This will assign v to ci. You may assume that 1 ≤ i ≤ n.

• If the first letter is “S” (for “sum”), it will be followed by a positive integer m and m English
lowercase letters c1, c2, ..., and cm. This will assign c2 + c3 + · · · cm to c1. You may assume that
ci has been created with an appropriate N event for all i = 2, ...,m. However, c1 may not be an
existing vector. In this case, you need to create a new vector whose value is c2 + c3 + · · · cm.

• If the first letter is “M” (for “minus”), it will be followed by a positive integer m and m English
lowercase letters c1, c2, ..., and cm. This will assign c2 − c3 − · · · cm to c1. You may assume that
ci has been created with an appropriate N event for all i = 2, ...,m. However, c1 may not be an
existing vector. In this case, you need to create a new vector whose value is c2 − c3 − · · · cm.

In each line, two consecutive values are separated by a white space. You may assume that n ≤ 20,
m ≤ 10, and all values that may be assigned into a vector can be stored in an int variable.

For example, consider a file containing

N a 3 0 0 0

N b 5 1 2 1 2 5

A a 8 3 4 3 4 3 4 5 6

N c 2 -1 -2

S 4 a a b c

I a 1 0

C L a b

as the input data. The first two lines creates two vectors a = (0, 0, 0) and b = (1, 2, 1, 2, 5). Then the
third line modifies a into a = (3, 4, 3, 4, 3, 4, 5, 6). After the fourth line creates c = (−1,−2), the fifth line
calculates a + b + c and then modify a into a + b + c (in other words, this lines adds b + c into a). As

a + b + c = (3, 4, 3, 4, 3, 4, 5, 6) + (1, 2, 1, 2, 5, 1, 2, 1) + (−1,−2,−1,−2,−1,−2,−1,−2)

= (3, 4, 3, 4, 7, 3, 6, 5),

3You may get the complete implementation of the class at the course website. See the “Codes” link for Week 13.

2



the vector a now becomes (3, 4, 3, 4, 7, 3, 6, 5). The sixth line then modifies a1 to 0; a thus becomes
(0, 4, 3, 4, 7, 3, 6, 5). Finally, we check whether a < b. As the second element-wise comparison yields
4 ≮ 1, the result is false. We should print out 0 as the outcome.

Please note that in each input file, there may be multiple C events. Each output number should
occupy a single line. You are considered making the right answer only if you are right for all the C
events.

What should be in your source file

You are required to implement a class RecyclingVector by completing the operator overloading tasks
given in this problem. Then in your main function, you should use the class to complete the given task.
If you need any member of RecyclingVector that is not defined above, feel free to add it. However,
your RecyclingVector must have at least the members defined in this problem.

Your .cpp source file should contain C++ codes that will both read testing data and complete the
above task. For this problem, you are NOT allowed to use techniques not covered in lectures. You should
write relevant comments for your codes.

Grading criteria

First of all, if you do not do operator overloading, you get no point. If you do operator overloading, the
grading is based on the following rules.

60 points for this program will be based on the correctness of your output. PDOGS will compile your
program, feed testing data into your program, and check the correctness of your outputs. For each set
of input data, if your program outputs correctly without violating the space limit, you get 2 points. The
30 testing files are organized in the following way:

• In the first ten files, there are only N, A, and C events.

• In the eleventh to the twentieth files, there are also I events.

• For the last ten files, there are all kinds of events.

30 points for this program will be based on how you write your program, including the logic and
format. Please try to write a robust, efficient, and easy-to-read program.

Problem 3 (bonus)

(30 points) Continue from Problem 2. Now the I, S, and M events are more complicated:

• For the I event, now i may be smaller than 1 or larger then n (the dimension of the vector). In this
case, you should still access one variable by recycling the vector until i is covered. For example,
if x = (1, 2, 3, 4), we have x10 being the second element of x and x−7 being the first element of x.
The indexing operator should find the right element for any integer value of i.

• For the S and M events, now the list of operand to be added together include both vectors and
scalars. More precisely, after the integer m, you will see m values which may be character or
integers. If there is an integer, it represents a vector whose dimension is 1 and value is that integer.
You should then do the addition and subtraction by definition. For example, if you are given

N a 3 0 0 0

N b 5 1 2 1 2 5

A a 8 3 4 3 4 3 4 5 6

N c 2 -1 -2

S 4 a a 2 c

C L a b

3



as the input, then the fifth line will calculate

a + 2 + c = (3, 4, 3, 4, 3, 4, 5, 6) + (2, 2, 2, 2, 2, 2, 2, 2) + (−1,−2,−1,−2,−1,−2,−1,−2)

= (4, 4, 4, 4, 4, 4, 6, 6)

and modify a into (4, 4, 4, 4, 4, 4, 6, 6). For M events it is the same. You may assume that the given
integers are all within 1 and 100.

For this problem, you are allowed to use any technique you like. There will be 15 input files, one for
2 points. Grading is solely based on the correctness of your program.

4


