
Programming Design

Algorithms and Recursion

Ling-Chieh Kung

Recursion Searching Sorting

Ling-Chieh Kung (NTU IM)Programming Design – Algorithms and Recursion 1 / 35

Ling-Chieh Kung

Department of Information Management

National Taiwan University

Introduction

• It is said that:

– Programming = Data structure + Algorithms.

– http://en.wikipedia.org/wiki/Algorithms_%2B_Data_Structures_%3D_Progr
ams

– To design a program, choose data structures to store your data and choose
algorithms to process your data.

Recursion Searching Sorting

Ling-Chieh Kung (NTU IM)Programming Design – Algorithms and Recursion 2 / 35

algorithms to process your data.

• Each of “data structures” and “algorithms” requires one (or more) courses.

– We will only give you very basic ideas.

http://en.wikipedia.org/wiki/Algorithms_%2B_Data_Structures_%3D_Programs
http://en.wikipedia.org/wiki/Algorithms_%2B_Data_Structures_%3D_Programs

Algorithms

• Today we talk about algorithms, collections of steps for completing a task.

– In general, an algorithm is used to solve a problem.

– The most common strategy is to divide a problem into small pieces and then
solve those subproblems.

– We will introduce recursion, a way to solve a problem based on the
solution/outcome of subproblems.

Recursion Searching Sorting

Ling-Chieh Kung (NTU IM)Programming Design – Algorithms and Recursion 3 / 35

solution/outcome of subproblems.

• For a problem, there may be multiple algorithms.

– The first criterion, of course, is correctness.

– Time complexity is typically the next for judging correct algorithms.

• As examples, we introduce two specific problems: searching and sorting.

• Let’s watch a video!

Outline

• Recursion

• Searching

• Sorting

Recursion Searching Sorting

Ling-Chieh Kung (NTU IM)Programming Design – Algorithms and Recursion 4 / 35

Recursive functions

• A function is recursive if it invokes itself (directly or indirectly).

• The process of using recursive functions is called recursion.

• Why recursion?

– Many problems can be solved by dividing the original problem into one or
several smaller pieces of subproblems.

quite similar

Recursion Searching Sorting

Ling-Chieh Kung (NTU IM)Programming Design – Algorithms and Recursion 5 / 35

– Typically subproblems are quite similar to the original problem.

– With recursion, we write one function to solve the problem by using the
same function to solve subproblems.

Example 1: finding the maximum

• Suppose that we want to find the maximum number in an array A[1..n] (which
means A is of size n).

– Is there any subproblem whose solution can be utilitzed?

– Subproblem: Finding the maximum in an array with size smaller than n.

• A strategy:

[1..(– 1)]

Recursion Searching Sorting

Ling-Chieh Kung (NTU IM)Programming Design – Algorithms and Recursion 6 / 35

– Subtask 1: First find the maximum of A[1..(n – 1)].

– Subtask 2: Then compare that with A[n].

• How would you visualize this strategy?

• While subtask 2 is simple, subtask 1 is similar to the original task.

– It can be solved with the same strategy!

Example 1: finding the maximum

• Let’s try to implement the strategy.

• First, I know I need to write a function whose header is:

– This function returns the maximum in array (containing len elements).

double max(double array[], int len);

Recursion Searching Sorting

Ling-Chieh Kung (NTU IM)Programming Design – Algorithms and Recursion 7 / 35

– I want this to happen, though at this moment I do not know how.

• Now let’s implement it:

– If the function really works, subtask 1 can be completed by invoking

– Subtask 2 is done by comparing subMax and array[len - 1].

double subMax = max(array, len - 1);

Example 1: finding the maximum

• A (wrong) implementation:

• What will happen if we really
invoke this function?

– The program will not terminate!

– Even when len is 1 in an

invocation, we will still try to

double max(double array[], int len)
{
double subMax = max(array, len - 1);
if (array[len - 1] > subMax)
return array[len - 1];

else
return subMax;

}

Recursion Searching Sorting

Ling-Chieh Kung (NTU IM)Programming Design – Algorithms and Recursion 8 / 35

invocation, we will still try to
invoke max(array, 0).

• For an array whose size is 1:

– That number is the maximum!

• With this, we can add a stopping
condition into our function.

}

int main()
{
double a[5] = {5, 7, 2, 4, 3};
cout << max(a, 5);
return 0;

}

• A correct implementation is:

• What is the outcome?

Example 1: finding the maximum

double max (double array[], int len)
{
if (len == 1) // stopping condition
return array[0];

else
{
// recursive call

int main()
{
double a[5] = {5, 7, 2, 4, 3};
cout << max(a, 5);

Recursion Searching Sorting

Ling-Chieh Kung (NTU IM)Programming Design – Algorithms and Recursion 9 / 35

• Both else can be removed. Why?

// recursive call
double subMax = max (array, len - 1);
if (array[len - 1] > subMax)
return array[len - 1];

else
return subMax;

}
}

cout << max(a, 5);
return 0;

}

• Is it okay to remove both else? Why?

Example 1: finding the maximum

double max (double array[], int len)
{
if (len == 1) // stopping condition
return array[0];

else
{

Recursion Searching Sorting

double max (double array[], int len)
{
if (len == 1) // stopping condition
return array[0];

// recursive call
double subMax = max (array, len - 1);

Ling-Chieh Kung (NTU IM)Programming Design – Algorithms and Recursion 10 / 35

{
// recursive call
double subMax = max (array, len - 1);
if (array[len - 1] > subMax)
return array[len - 1];

else
return subMax;

}
}

double subMax = max (array, len - 1);
if (array[len - 1] > subMax)
return array[len - 1];

return subMax;
}

Example 2: computing factorials

• How to write a function that computes the factorial of n?

– A subproblem: computing the factorial of n – 1.

– A strategy: First calculate the factorial of n – 1, then multiply it with n.

int factorial (int n)
{

Recursion Searching Sorting

Ling-Chieh Kung (NTU IM)Programming Design – Algorithms and Recursion 11 / 35

{
if (n == 1) // stopping condition
return 1;

else
// recursive call
return factorial (n - 1) * n;

}

Example 2: computing factorials

• When we invoke this function with argument 4:

• factorial(4)

= factorial(3) * 4

= (factorial(2) * 3) * 4

= ((factorial(1) * 2) * 3) * 4

Recursion Searching Sorting

Ling-Chieh Kung (NTU IM)Programming Design – Algorithms and Recursion 12 / 35

= ((1 * 2) * 3) * 4

= (2 * 3) * 4

= 6 * 4

= 24

Example 3: the Fibonacci sequence

• Write a recursive function to find the nth Fibonacci number.

– The Fibonacci sequence is 1, 1, 2, 3, 5, 8, 13, 21, …. Each number is the
sum of the two proceeding numbers.

– The nth value can be found once we know the (n – 1)th and (n – 2)th values.

int fib (int n)

Recursion Searching Sorting

Ling-Chieh Kung (NTU IM)Programming Design – Algorithms and Recursion 13 / 35

{
if (n == 1)
return 1;

else if (n == 2)
return 1;

else // two recursive calls
return (fib (n - 1) + fib (n - 2));

}

Some remarks

• There must be a stopping condition in a recursive function. Otherwise, the
program will not terminate.

• In many cases, a recursive strategy can also be implemented with loops.

– E.g., writing a loop for finding a maximum and factorial.

– But sometimes it is hard to use loops to imitate a recursive function.

Recursion Searching Sorting

Ling-Chieh Kung (NTU IM)Programming Design – Algorithms and Recursion 14 / 35

• Compared with an equivalent iterative function, a recursive implementation is
usually simpler and easier to understand.

• However, it generally uses more memory spaces and is more time-consuming.

– Invoking functions has some cost.

Complexity issue of recursion

• In some cases, recursion is efficient enough.

– E.g., finding a maximum or calculating the factorial.

• In some cases, however, recursion can be very inefficient!

– E.g., Fibonacci.

• Let’s compare the efficiency of two different implementations.

Recursion Searching Sorting

Ling-Chieh Kung (NTU IM)Programming Design – Algorithms and Recursion 15 / 35

Complexity issue of recursion

• Two implementations: double fibRepetitive (int n)
{
if (n == 1)
return 1;

else if (n == 2)
return 1;

double* fib = new double[n];

int fib (int n)
{
if (n == 1)
return 1;

else if (n == 2)
return 1;

Recursion Searching Sorting

Ling-Chieh Kung (NTU IM)Programming Design – Algorithms and Recursion 16 / 35

double* fib = new double[n];
fib[0] = 1;
fib[1] = 1;
for (int i = 2; i < n; i++)
fib[i] = fib[i - 1] + fib[i - 2];

double result = fib[n - 1];
delete[] fib; // to be explained
return result;

}

return 1;
else // two recursive calls
return (fib (n-1) + fib (n-2));

}

Complexity issue of recursion

• Which one is faster?

int main ()
{
int n = 0;
cin >> n;
cout << fibRepetitive(n) << "\n"; // algorithm 1
cout << fib(n) << "\n"; // algorithm 2

Recursion Searching Sorting

Ling-Chieh Kung (NTU IM)Programming Design – Algorithms and Recursion 17 / 35

cout << fib(n) << "\n"; // algorithm 2
return 0;

}

Polynomial time vs. exponential time

• Given n:

– The repetitive way has around c1n steps, where c1 > 0 is a constant.

– The recursive way has around c22
n steps, where c2 > 0 is a constant.

• When n is large enough, c22
n is much larger than c1n.

– Even if c1 << c2!

Recursion Searching Sorting

Ling-Chieh Kung (NTU IM)Programming Design – Algorithms and Recursion 18 / 35

1 2

– We say the repetitive way is more efficient.

• Technically, we say that:

– The repetitive way is a polynomial-time algorithm

– The recursive way is an exponential-time algorithm.

• In general, an exponential-time algorithm is just too inefficient.

Power of recursion

• Though recursion is sometimes inefficient, typically implementation is easier.

• Let’s consider the classic example “Hanoi Tower”.

– There are three pillars and disks of different sizes which can slide onto any
pillar. Disc i is smaller than disc j if i < j.

– A large disc cannot be placed on top of a small disc.

Recursion Searching Sorting

Ling-Chieh Kung (NTU IM)Programming Design – Algorithms and Recursion 19 / 35

• Initially, all discs are at pillar A. We want to move them to pillar C:

– Only one disk can be moved at a time.

– Each move consists of taking the upper disk from one of the stacks and
placing it on top of another stack.

• Let’s watch a video!

• What are the steps that solve the Hanoi Tower problem in the fastest way?

Power of recursion

• A recursive implementation:

void hanoi (char from, char via, char to, int disc)
{
if (disc == 1)
cout << "From " << from << " to " << to << endl;

else
{

#include <iostream>
using namespace std;

int main ()
{
int disc = 0; // number of discs
cin >> disc;
char a = 'A', b = 'B', c = 'C';

Recursion Searching Sorting

Ling-Chieh Kung (NTU IM)Programming Design – Algorithms and Recursion 20 / 35

• Is there a good way of solving the Hanoi Tower problem iteratively?

{
hanoi (from, to, via, disc - 1);
cout << "From " << from << " to " << to << endl;
hanoi (via, from, to, disc - 1);

}
}

char a = 'A', b = 'B', c = 'C';

hanoi (a, b, c, disc);

return 0;
}

Outline

• Recursion

• Searching

• Sorting

Recursion Searching Sorting

Ling-Chieh Kung (NTU IM)Programming Design – Algorithms and Recursion 21 / 35

Searching

• One fundamental task in computation is to search for an element.

– We want to determine whether an element exists in a set.

– If yes, we want to locate that element.

– E.g., looking for a string in an article.

• Here we will discuss how to search for an integer in an one-dimensional array.

Recursion Searching Sorting

Ling-Chieh Kung (NTU IM)Programming Design – Algorithms and Recursion 22 / 35

• Whether the array is sorted makes a big difference.

Searching

• Consider an integer array A[1..n] and an integer p.

• How to determine whether p exists in A?

• If so, where is it?

– Assume that we only need to find one p even if there are multiple.

• Suppose that the array is unsorted.

Recursion Searching Sorting

Ling-Chieh Kung (NTU IM)Programming Design – Algorithms and Recursion 23 / 35

• One of the most straightforward way is to apply a linear search.

– Compare each element with p one by one, from the first to the last.

– Whenever we find a match, report its location.

– Conclude that p does not exist if we end up with nothing.

• The number of operations we need to execute is roughly proportional to n.

Binary search

• What if the array is sorted?

• We may still apply the linear search.

• However, we may improve the efficiency by implementing a binary search.

– First, we compare p with the median m (e.g., A[(n + 1) / 2] if n is odd).

– If p equals m, bingo!

Recursion Searching Sorting

Ling-Chieh Kung (NTU IM)Programming Design – Algorithms and Recursion 24 / 35

– If p < m, we know p must exist in the first half of A if it exists.

– If p > m, we know p must exist in the second half of A if it exists.

– For the latter two cases, we will continue searching in the subarray.

• Let’s watch a video!

Binary search: pseudocode

• binarySearch(a sorted array A, search in between from and to, search for p)

if n = 1

return true if Afrom = p; return false otherwise

else

let median be floor((from + to) / 2)

Recursion Searching Sorting

Ling-Chieh Kung (NTU IM)Programming Design – Algorithms and Recursion 25 / 35

if p = Amedian

return true

else if p < Amedian

return binarySearch(A, from, median, p)

else

return binarySearch(A, median + 1, to, p)

Linear search vs. binary search

• In binary search, the number of instructions to be executed is roughly
proportional to log2 n.

• So binary search is much more efficient than linear search!

– The difference is huge is the array is large.

– However, binary search is possible only if the array is sorted.

Recursion Searching Sorting

Ling-Chieh Kung (NTU IM)Programming Design – Algorithms and Recursion 26 / 35

– Is it worthwhile to sort an array before we search it?

• It is natural to implement binary search with recursion.

– A subproblem is to search for the element in one half of the array.

• Binary search can also be implemented with repetition.

– Is it natural to do so?

Outline

• Recursion

• Searching

• Sorting

Recursion Searching Sorting

Ling-Chieh Kung (NTU IM)Programming Design – Algorithms and Recursion 27 / 35

Sorting

• Given a one-dimensional integer array A of size n, how to sort it?

• Given numbers 6, 9, 3, 4, and 7, how would you sort them?

• Recall what you typically do when you play poker:

– First put the first number 6 aside.

– Compare the second number 9 with 6. Because 9 > 6, put 9 to the right of 6.

Recursion Searching Sorting

Ling-Chieh Kung (NTU IM)Programming Design – Algorithms and Recursion 28 / 35

– Compare the third number 3 with the sorted list (6, 9). Because 3 < 6, put 3
to the left of 6.

– Compare 4 with (3, 6, 9). Because 3 < 4 < 6, insert 4 in between 3 and 6.

– Compare 7 with (3, 4, 6, 9). Because 6 < 7 < 9, insert 7 in between 6 and 9.

– The result is (3, 4, 6, 7, 9).

• Let’s watch a video!

Insertion sort

• The above algorithm is called insertion sort.

– The key is to maintain a sorted list.

– Then for each number in the unsorted list, insert it into the proper location
so that the sorted list remains sorted.

• How would you implement the insertion sort?

Recursion Searching Sorting

Ling-Chieh Kung (NTU IM)Programming Design – Algorithms and Recursion 29 / 35

– Recursion or repetition?

– If recursion, what is your strategy?

(Non-repetitive) insertion sort

• insertionSort(a non-repetitive array A, the array length n, an index cutoff < n)

// at any time, A1..cutoff is sorted and A(cutoff + 1)..n is unsorted

if Acutoff + 1 < A1..cutoff

let p be 1

else

Recursion Searching Sorting

Ling-Chieh Kung (NTU IM)Programming Design – Algorithms and Recursion 30 / 35

find p such that Ap – 1 < Acutoff + 1 < Ap

insert Acutoff + 1 to Ap and shift Ap..cutoff to A(p + 1)..(cutoff + 1)

if cutoff + 1 < n

insertionSort(A, n, cutoff + 1)

• What if A is repetitive?

Insertion sort

• Roughly how many instructions do we need for insertion sort?

– We need to do n insertions.

– To insert the kth value, we search for a position and shift some elements.

• A linear search: at most k comparisons.

• Shifting: at most k shifts.

Recursion Searching Sorting

Ling-Chieh Kung (NTU IM)Programming Design – Algorithms and Recursion 31 / 35

– Roughly we need 1 + 2 + … + n operations, which is proportional to n2.

• Does binary search help?

Mergesort (Merge sort)

• Insertion sort is simple and fast!

– Not really “fast”, but faster than many similar sorting algorithm.

– Because its idea and implementation is simple, it is faster than most
algorithms when the array size is small.

• Interestingly, there is another sorting algorithm:

Recursion Searching Sorting

Ling-Chieh Kung (NTU IM)Programming Design – Algorithms and Recursion 32 / 35

– Its idea is somewhat similar to insertion sort.

– But it is significantly faster for large arrays!

• This algorithm is called mergesort.

Mergesort (Merge sort)

• Recall that in an insertion sort, we need to insert one number into a sorted list
for many times.

• A key observation is that “inserting” another sorted list of size k into a sorted
list can be faster than inserting k separate numbers one by one!

– So such “inserting” is actually “merging”.

• Given an unsorted array, we will:

Recursion Searching Sorting

Ling-Chieh Kung (NTU IM)Programming Design – Algorithms and Recursion 33 / 35

• Given an unsorted array, we will:

– First split the array into two parts, the first half and second half.

– Then sort each subarray.

– Finally, merge these two subarrays.

• Mergesort is perfect for recursion!

Mergesort (Merge sort): pseudocode

mergeSort(an array A, the array length n)

let median be floor((1 + n) / 2)

mergeSort(A1..median, median) // now A1..median is sorted

mergeSort(A(median + 1)..n, n – median + 1) // now A(median + 1)..n is sorted

merge A1..median and A(median + 1)..n // how?

Recursion Searching Sorting

Ling-Chieh Kung (NTU IM)Programming Design – Algorithms and Recursion 34 / 35

Mergesort (Merge sort)

• Interestingly, insertion sort is a special way of running mergesort.

– Not splitting the array into two halves.

– Instead, splitting it into A[1..n – 1] and A[n].

• Once we use the “smart split”, the efficiency is improved a lot!

– Insertion sort: Roughly proportional to n2.

Recursion Searching Sorting

Ling-Chieh Kung (NTU IM)Programming Design – Algorithms and Recursion 35 / 35

– Merge sort: Roughly proportional to n log n.

• A simple observation can make a huge difference!

	Programming Design�Algorithms and Recursion
	Introduction
	Algorithms
	Outline
	Recursive functions
	Example 1: finding the maximum
	Example 1: finding the maximum
	Example 1: finding the maximum
	Example 1: finding the maximum
	Example 1: finding the maximum
	Example 2: computing factorials
	Example 2: computing factorials
	Example 3: the Fibonacci sequence
	Some remarks
	Complexity issue of recursion
	Complexity issue of recursion
	Complexity issue of recursion
	Polynomial time vs. exponential time
	Power of recursion
	Power of recursion
	Outline
	Searching
	Searching
	Binary search
	Binary search: pseudocode
	Linear search vs. binary search
	Outline
	Sorting
	Insertion sort
	(Non-repetitive) insertion sort
	Insertion sort
	Mergesort (Merge sort)
	Mergesort (Merge sort)
	Mergesort (Merge sort): pseudocode
	Mergesort (Merge sort)

