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Introduction

• It is said that:

– Programming = Data structure + Algorithms. 

– http://en.wikipedia.org/wiki/Algorithms_%2B_Data_Structures_%3D_Progr
ams

– To design a program, choose data structures to store your data and choose 
algorithms to process your data.  

Recursion Searching Sorting

Ling-Chieh Kung (NTU IM)Programming Design – Algorithms and Recursion 2 / 35

algorithms to process your data.  

• Each of “data structures” and “algorithms” requires one (or more) courses. 

– We will only give you very basic ideas.  

http://en.wikipedia.org/wiki/Algorithms_%2B_Data_Structures_%3D_Programs
http://en.wikipedia.org/wiki/Algorithms_%2B_Data_Structures_%3D_Programs


Algorithms

• Today we talk about algorithms, collections of steps for completing a task. 

– In general, an algorithm is used to solve a problem. 

– The most common strategy is to divide a problem into small pieces and then 
solve those subproblems. 

– We will introduce recursion, a way to solve a problem based on the 
solution/outcome of subproblems. 
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solution/outcome of subproblems. 

• For a problem, there may be multiple algorithms. 

– The first criterion, of course, is correctness. 

– Time complexity is typically the next for judging correct algorithms. 

• As examples, we introduce two specific problems: searching and sorting. 

• Let’s watch a video! 



Outline

• Recursion

• Searching

• Sorting
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Recursive functions

• A function is recursive if it invokes itself (directly or indirectly). 

• The process of using recursive functions is called recursion. 

• Why recursion? 

– Many problems can be solved by dividing the original problem into one or 
several smaller pieces of subproblems. 

quite similar 
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– Typically subproblems are quite similar to the original problem. 

– With recursion, we write one function to solve the problem by using the 
same function to solve subproblems. 



Example 1: finding the maximum

• Suppose that we want to find the maximum number in an array A[1..n] (which 
means A is of size n). 

– Is there any subproblem whose solution can be utilitzed? 

– Subproblem: Finding the maximum in an array with size smaller than n. 

• A strategy: 

[1..( – 1)]
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– Subtask 1: First find the maximum of A[1..(n – 1)]. 

– Subtask 2: Then compare that with A[n]. 

• How would you visualize this strategy? 

• While subtask 2 is simple, subtask 1 is similar to the original task. 

– It can be solved with the same strategy! 



Example 1: finding the maximum

• Let’s try to implement the strategy.  

• First, I know I need to write a function whose header is: 

– This function returns the maximum in array (containing len elements). 

double max(double array[], int len);
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– I want this to happen, though at this moment I do not know how. 

• Now let’s implement it: 

– If the function really works, subtask 1 can be completed by invoking 

– Subtask 2 is done by comparing subMax and array[len - 1]. 

double subMax = max(array, len - 1);



Example 1: finding the maximum

• A (wrong) implementation: 

• What will happen if we really 
invoke this function? 

– The program will not terminate! 

– Even when len is 1 in an 

invocation, we will still try to 

double max(double array[], int len)
{
double subMax = max(array, len - 1); 
if (array[len - 1] > subMax)
return array[len - 1];

else
return subMax;

}
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invocation, we will still try to 
invoke max(array, 0). 

• For an array whose size is 1: 

– That number is the maximum! 

• With this, we can add a stopping 
condition into our function. 

}

int main()
{
double a[5] = {5, 7, 2, 4, 3}; 
cout << max(a, 5); 
return 0;

}



• A correct implementation is: 

• What is the outcome? 

Example 1: finding the maximum

double max (double array[], int len)
{
if (len == 1) // stopping condition
return array[0];

else 
{
// recursive call

int main()
{
double a[5] = {5, 7, 2, 4, 3}; 
cout << max(a, 5); 
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• Both else can be removed. Why? 

// recursive call
double subMax = max (array, len - 1); 
if (array[len - 1] > subMax)
return array[len - 1];

else
return subMax;

}
}

cout << max(a, 5); 
return 0;

}



• Is it okay to remove both else? Why? 

Example 1: finding the maximum

double max (double array[], int len)
{
if (len == 1) // stopping condition
return array[0];

else 
{
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{
// recursive call
double subMax = max (array, len - 1); 
if (array[len - 1] > subMax)
return array[len - 1];

else
return subMax;

}
}

double subMax = max (array, len - 1); 
if (array[len - 1] > subMax)
return array[len - 1];

return subMax;
}



Example 2: computing factorials

• How to write a function that computes the factorial of n? 

– A subproblem: computing the factorial of n – 1. 

– A strategy: First calculate the factorial of n – 1, then multiply it with n. 

int factorial (int n)
{
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{
if (n == 1) // stopping condition
return 1;

else
// recursive call
return factorial (n - 1) * n;

}



Example 2: computing factorials

• When we invoke this function with argument 4: 

• factorial(4)

= factorial(3) * 4

= (factorial(2) * 3) * 4

= ((factorial(1) * 2) * 3) * 4
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= ((1 * 2) * 3) * 4

= (2 * 3) * 4

= 6 * 4

= 24



Example 3: the Fibonacci sequence

• Write a recursive function to find the nth Fibonacci number. 

– The Fibonacci sequence is 1, 1, 2, 3, 5, 8, 13, 21, …. Each number is the 
sum of the two proceeding numbers. 

– The nth value can be found once we know the (n – 1)th and (n – 2)th values. 

int fib (int n)
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{
if (n == 1)
return 1;

else if (n == 2)
return 1;

else // two recursive calls
return (fib (n - 1) + fib (n - 2));

}



Some remarks 

• There must be a stopping condition in a recursive function. Otherwise, the 
program will not terminate.

• In many cases, a recursive strategy can also be implemented with loops. 

– E.g., writing a loop for finding a maximum and factorial. 

– But sometimes it is hard to use loops to imitate a recursive function. 
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• Compared with an equivalent iterative function, a recursive implementation is 
usually simpler and easier to understand. 

• However, it generally uses more memory spaces and is more time-consuming.

– Invoking functions has some cost. 



Complexity issue of recursion

• In some cases, recursion is efficient enough. 

– E.g., finding a maximum or calculating the factorial. 

• In some cases, however, recursion can be very inefficient! 

– E.g., Fibonacci. 

• Let’s compare the efficiency of two different implementations. 
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Complexity issue of recursion

• Two implementations: double fibRepetitive (int n)
{
if (n == 1)
return 1;

else if (n == 2)
return 1;

double* fib = new double[n];

int fib (int n)
{
if (n == 1)
return 1;

else if (n == 2)
return 1;
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double* fib = new double[n];
fib[0] = 1;
fib[1] = 1;
for (int i = 2; i < n; i++)
fib[i] = fib[i - 1] + fib[i - 2];

double result = fib[n - 1];
delete[] fib; // to be explained
return result;

}

return 1;
else // two recursive calls
return (fib (n-1) + fib (n-2));

}



Complexity issue of recursion

• Which one is faster?

int main () 
{
int n = 0;
cin >> n; 
cout << fibRepetitive(n) << "\n"; // algorithm 1
cout << fib(n) << "\n"; // algorithm 2
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cout << fib(n) << "\n"; // algorithm 2
return 0;

}



Polynomial time vs. exponential time

• Given n: 

– The repetitive way has around c1n steps, where c1 > 0 is a constant.   

– The recursive way has around c22
n steps, where c2 > 0 is a constant. 

• When n is large enough, c22
n is much larger than c1n. 

– Even if c1 << c2! 
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1 2

– We say the repetitive way is more efficient. 

• Technically, we say that: 

– The repetitive way is a polynomial-time algorithm 

– The recursive way is an exponential-time algorithm. 

• In general, an exponential-time algorithm is just too inefficient. 



Power of recursion

• Though recursion is sometimes inefficient, typically implementation is easier. 

• Let’s consider the classic example “Hanoi Tower”. 

– There are three pillars and disks of different sizes which can slide onto any 
pillar. Disc i is smaller than disc j if i < j. 

– A large disc cannot be placed on top of a small disc.
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• Initially, all discs are at pillar A. We want to move them to pillar C: 

– Only one disk can be moved at a time.

– Each move consists of taking the upper disk from one of the stacks and 
placing it on top of another stack. 

• Let’s watch a video!

• What are the steps that solve the Hanoi Tower problem in the fastest way? 



Power of recursion

• A recursive implementation: 

void hanoi (char from, char via, char to, int disc)
{
if (disc == 1)
cout << "From " << from << " to " << to << endl;

else
{

#include <iostream>
using namespace std;

int main ()
{
int disc = 0; // number of discs
cin >> disc;
char a = 'A', b = 'B', c = 'C';
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• Is there a good way of solving the Hanoi Tower problem iteratively? 

{
hanoi (from, to, via, disc - 1);
cout << "From " << from << " to " << to << endl;
hanoi (via, from, to, disc - 1);

}
}

char a = 'A', b = 'B', c = 'C';

hanoi (a, b, c, disc);

return 0;
}
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Searching

• One fundamental task in computation is to search for an element. 

– We want to determine whether an element exists in a set. 

– If yes, we want to locate that element. 

– E.g., looking for a string in an article. 

• Here we will discuss how to search for an integer in an one-dimensional array. 
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• Whether the array is sorted makes a big difference. 



Searching

• Consider an integer array A[1..n] and an integer p. 

• How to determine whether p exists in A?  

• If so, where is it? 

– Assume that we only need to find one p even if there are multiple. 

• Suppose that the array is unsorted. 
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• One of the most straightforward way is to apply a linear search. 

– Compare each element with p one by one, from the first to the last. 

– Whenever we find a match, report its location. 

– Conclude that p does not exist if we end up with nothing. 

• The number of operations we need to execute is roughly proportional to n. 



Binary search

• What if the array is sorted? 

• We may still apply the linear search. 

• However, we may improve the efficiency by implementing a binary search. 

– First, we compare p with the median m (e.g., A[(n + 1) / 2] if n is odd). 

– If p equals m, bingo! 
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– If p < m, we know p must exist in the first half of A if it exists. 

– If p > m, we know p must exist in the second half of A if it exists. 

– For the latter two cases, we will continue searching in the subarray. 

• Let’s watch a video! 



Binary search: pseudocode

• binarySearch(a sorted array A, search in between from and to, search for p)

if n = 1

return true if Afrom = p; return false otherwise

else

let median be floor((from + to) / 2)

Recursion Searching Sorting

Ling-Chieh Kung (NTU IM)Programming Design – Algorithms and Recursion 25 / 35

if p = Amedian

return true

else if p < Amedian

return binarySearch(A, from, median, p)

else

return binarySearch(A, median + 1, to, p)



Linear search vs. binary search

• In binary search, the number of instructions to be executed is roughly 
proportional to log2 n. 

• So binary search is much more efficient than linear search! 

– The difference is huge is the array is large. 

– However, binary search is possible only if the array is sorted. 
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– Is it worthwhile to sort an array before we search it? 

• It is natural to implement binary search with recursion. 

– A subproblem is to search for the element in one half of the array. 

• Binary search can also be implemented with repetition. 

– Is it natural to do so? 
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Sorting

• Given a one-dimensional integer array A of size n, how to sort it? 

• Given numbers 6, 9, 3, 4, and 7, how would you sort them? 

• Recall what you typically do when you play poker: 

– First put the first number 6 aside. 

– Compare the second number 9 with 6. Because 9 > 6, put 9 to the right of 6. 
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– Compare the third number 3 with the sorted list (6, 9). Because 3 < 6, put 3 
to the left of 6. 

– Compare 4 with (3, 6, 9). Because 3 < 4 < 6, insert 4 in between 3 and 6. 

– Compare 7 with (3, 4, 6, 9). Because 6 < 7 < 9, insert 7 in between 6 and 9.  

– The result is (3, 4, 6, 7, 9). 

• Let’s watch a video! 



Insertion sort

• The above algorithm is called insertion sort. 

– The key is to maintain a sorted list. 

– Then for each number in the unsorted list, insert it into the proper location 
so that the sorted list remains sorted. 

• How would you implement the insertion sort? 
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– Recursion or repetition? 

– If recursion, what is your strategy? 



(Non-repetitive) insertion sort

• insertionSort(a non-repetitive array A, the array length n, an index cutoff < n)

// at any time, A1..cutoff is sorted and A(cutoff + 1)..n is unsorted

if Acutoff + 1 < A1..cutoff

let p be 1

else
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find p such that Ap – 1 < Acutoff + 1 < Ap

insert Acutoff + 1 to Ap and shift Ap..cutoff to A(p + 1)..(cutoff + 1)

if cutoff + 1 < n

insertionSort(A, n, cutoff + 1)

• What if A is repetitive? 



Insertion sort

• Roughly how many instructions do we need for insertion sort?

– We need to do n insertions.  

– To insert the kth value, we search for a position and shift some elements. 

• A linear search: at most k comparisons. 

• Shifting: at most k shifts. 
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– Roughly we need 1 + 2 + … + n operations, which is proportional to n2.

• Does binary search help? 



Mergesort (Merge sort)

• Insertion sort is simple and fast! 

– Not really “fast”, but faster than many similar sorting algorithm. 

– Because its idea and implementation is simple, it is faster than most 
algorithms when the array size is small. 

• Interestingly, there is another sorting algorithm: 
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– Its idea is somewhat similar to insertion sort. 

– But it is significantly faster for large arrays! 

• This algorithm is called mergesort. 



Mergesort (Merge sort)

• Recall that in an insertion sort, we need to insert one number into a sorted list 
for many times. 

• A key observation is that “inserting” another sorted list of size k into a sorted 
list can be faster than inserting k separate numbers one by one! 

– So such “inserting” is actually “merging”.

• Given an unsorted array, we will: 
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• Given an unsorted array, we will: 

– First split the array into two parts, the first half and second half. 

– Then sort each subarray. 

– Finally, merge these two subarrays. 

• Mergesort is perfect for recursion! 



Mergesort (Merge sort): pseudocode

mergeSort(an array A, the array length n)

let median be floor((1 + n) / 2) 

mergeSort(A1..median, median) // now A1..median is sorted

mergeSort(A(median + 1)..n, n – median + 1) // now A(median + 1)..n is sorted

merge A1..median and A(median + 1)..n // how?
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Mergesort (Merge sort)

• Interestingly, insertion sort is a special way of running mergesort. 

– Not splitting the array into two halves. 

– Instead, splitting it into A[1..n – 1] and A[n]. 

• Once we use the “smart split”, the efficiency is improved a lot! 

– Insertion sort: Roughly proportional to n2. 
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– Merge sort: Roughly proportional to n log n. 

• A simple observation can make a huge difference! 
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