
Ling-Chieh Kung (NTU IM)Programming Design – Pointers 1 / 47

Programming Design

Pointers

Ling-Chieh Kung

Department of Information Management

National Taiwan University

Basics of pointers Call by reference/pointer

Arrays and pointer arithmetic Dynamic memory allocation (DMA)

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 2 / 47

Outline

• Basics of pointers

• Call by reference/pointer

• Arrays and pointer arithmetic

• Dynamic memory allocation (DMA)

Basics of pointers Call by reference/pointer

Arrays and pointer arithmetic Dynamic memory allocation (DMA)

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 3 / 47

Pointers

• A pointer is a variable which stores a memory address.

– An array variable is a pointer.

• To declare a pointer, use *.

• Examples:

– These pointers will store addresses.

– These pointers will store addresses of int/double variables.

• We may point to any type.

• To point to different types, use different types of pointers.

type pointed* pointer name; type pointed *pointer name;

int *ptrInt; double* ptrDou;

Basics of pointers Call by reference/pointer

Arrays and pointer arithmetic Dynamic memory allocation (DMA)

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 4 / 47

Sizes of pointers

• All pointers have the same size.

– In a 32-bit computer, a pointer is allocated 4 bytes.

– In a 64-bit computer, a pointer is allocated 8 bytes.

• The length of pointers decides the maximum size of the memory space.

– 32 bits: 232 bytes = 4GB.

– 64 bits: 264 bytes = ?

int* p1 = 0;
cout << sizeof(p1) << endl; // 8
double* p2 = 0;
cout << sizeof(p2) << endl; // 8

Basics of pointers Call by reference/pointer

Arrays and pointer arithmetic Dynamic memory allocation (DMA)

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 5 / 47

Pointer assignment

• We use the address-of operator & to obtain a variable’s address:

• The address-of operator & returns the (beginning) address of a variable.

• Example:

– ptr points to a, i.e., ptr
stores the address of a.

• When assigning an address, the two types must match.

pointer name = &variable name

Basics of pointers Call by reference/pointer

Arrays and pointer arithmetic Dynamic memory allocation (DMA)

int a = 5;
int* ptr = &a;

int a = 5;
double* ptr = &a; // error!

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 6 / 47

• int a = 5;

• double b = 10.5;

• int* aPtr = &a;

• double* bPtr = &b;

• cout << &a; // 0x20c644

• cout << &b; // 0x20c660

• cout << &aPtr; // 0x20c658

• cout << &bPtr; // 0x20c64c

Variables in memory

Address Identifier Value

Memory

Basics of pointers Call by reference/pointer

Arrays and pointer arithmetic Dynamic memory allocation (DMA)

0x20c64c
bPtr 0x20c660

0x20c650

0x20c658
aPtr 0x20c644

0x20c65c

0x20c660
b 10.5

0x20c664

0x20c644 a 5

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 7 / 47

Address operators

• There are two address operators.

– &: The address-of operator. It returns a variable’s address.

– *: The dereference operator. It returns the pointed variable (not the value!).

• For int a = 5:

– a equals 5.

– &a returns an address (e.g., 0x22ff78).

• For int* ptrA = &a:

– ptrA stores an address (e.g., 0x22ff78).

– &ptrA returns the pointer’s address (e.g., 0x21aa74). This has nothing to do
with the pointed variable a.

– *ptrA returns a, the variable pointed by the pointer.

Basics of pointers Call by reference/pointer

Arrays and pointer arithmetic Dynamic memory allocation (DMA)

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 8 / 47

Address operators

• Example:

int a = 10;
int* p1 = &a;
cout << "value of a = " << a << endl;
cout << "value of p1 = " << p1 << endl;
cout << "address of a = " << &a << endl;
cout << "address of p1 = " << &p1 << endl;
cout << "value of the variable pointed by p1 = " << *p1 << endl;

Basics of pointers Call by reference/pointer

Arrays and pointer arithmetic Dynamic memory allocation (DMA)

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 9 / 47

Address operators and NULL

• &: returns a variable’s address.

– We cannot use &100, &(a++) (because a++ returns the value of a).

– We can only perform & on a variable.

– We cannot assign value to &x (&x is a value!).

– We can get a usual variable’s or a pointer variable’s address.

• *: returns the pointed variable, not its value.

– We can perform * on a pointer variable.

– We cannot perform * on a usual variable.

– We cannot change a variable’s address. No operation can do this.

• A pointer pointing to nothing should be assigned NULL or 0.

Basics of pointers Call by reference/pointer

Arrays and pointer arithmetic Dynamic memory allocation (DMA)

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 10 / 47

• Examples:

Address operators and NULL

int a = 10;
int* ptr = NULL;
ptr = &a;
cout << *ptr; // ?
*ptr = 5;
cout << a; // ?
a = 18;
cout << *ptr; // ?

int a = 10;
int* ptr1 = NULL;
int* ptr2 = NULL;
ptr1 = ptr2 = &a;
cout << *ptr1; // ?
*ptr2 = 5;
cout << *ptr1; // ?
(*ptr1)++;
cout << a; // ?

Basics of pointers Call by reference/pointer

Arrays and pointer arithmetic Dynamic memory allocation (DMA)

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 11 / 47

Address operators and NULL

• Dereferencing a null pointer shutdowns the program (a run-time error).

int* p2 = NULL;
cout << "value of p2 = " << p2 << endl;
cout << "address of p2 = " << &p2 << endl;
cout << "the variable pointed by p2 = " << *p2 << endl;

Basics of pointers Call by reference/pointer

Arrays and pointer arithmetic Dynamic memory allocation (DMA)

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 12 / 47

& and * cancel each other

• What is *&x if x is a variable?

– &x is the address of x.

– *(&x) is the variable stored in that address.

– So *(&x) is x.

• What is &*x if x is a pointer?

– If x is a pointer, *x is the variable stored at x (x stores an address!).

– &*x is the address of *x, which is exactly x.

• What is &*x if x is not a pointer?

Basics of pointers Call by reference/pointer

Arrays and pointer arithmetic Dynamic memory allocation (DMA)

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 13 / 47

Good programming style

• Initialize a pointer variable as 0 or NULL if no initial value is available.

– 0 is the standard in C++, while NULL is the standard in C. But they are the

same for representing “null pointer”.

– By using NULL, everyone knows the variable must be a pointer, and you are

not talking about a number or character.

• Without an initialization, a pointer points to somewhere... And we do not know
where it is!

– Accessing an unknown address results in unpredictable results.

• In general, when you get a run time error or different outcomes for multiple
executions, check your arrays and pointers.

Basics of pointers Call by reference/pointer

Arrays and pointer arithmetic Dynamic memory allocation (DMA)

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 14 / 47

Good programming style

• As a bad example:

Basics of pointers Call by reference/pointer

Arrays and pointer arithmetic Dynamic memory allocation (DMA)

#include <iostream>
using namespace std;

int main()
{
int* ptrArray[10000];
for(int i = 0; i < 10000; i++)
cout << i << " " << *ptrArray[i] << "\n";

return 0;
}

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 15 / 47

Good programming style

• When we use * in declaring a pointer, that * is not a dereference operator.

– It is just a special syntax for declaring a pointer variable.

• I prefer to view int* as a type, which represents an “integer pointer”.

• Therefore, I prefer “int* p” to “int *p”.

• Be careful:

• I use multiple statements to declare multiple pointers.

int* p, q; // p is int*, q is int
int *p, *q; // two pointers
int* p, *q; // two pointers
int* p, * q; // two pointers

Basics of pointers Call by reference/pointer

Arrays and pointer arithmetic Dynamic memory allocation (DMA)

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 16 / 47

Outline

• The basics of pointers

• Call by reference/pointer

• Arrays and pointer arithmetic

• Dynamic memory allocation (DMA)

Basics of pointers Call by reference/pointer

Arrays and pointer arithmetic Dynamic memory allocation (DMA)

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 17 / 47

References and pointers

• Recall this example: void swap (int x, int y);
int main()
{
int a = 10, b = 20;
cout << a << " " << b << endl;
swap(a, b);
cout << a << " " << b << endl;

}
void swap (int x, int y)
{
int temp = x;
x = y;
y = temp;

}

Basics of pointers Call by reference/pointer

Arrays and pointer arithmetic Dynamic memory allocation (DMA)

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 18 / 47

References and pointers

• When invoking a function and passing parameters, the default scheme is to “call
by value” (or “pass by value”).

– The function declares its own local variables, using a copy of the arguments’
values as initial values.

– Thus we swapped the two local variables declared in the function, not the
original two we want to swap.

• To solve this, we can use “call by reference” or “call by pointer.”

– They are somewhat different, but the principle is the same.

– It is enough to know and use only one of them.

Basics of pointers Call by reference/pointer

Arrays and pointer arithmetic Dynamic memory allocation (DMA)

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 19 / 47

Call by reference

• A reference is a variable’s alias.

• The reference is another variable that refers to the variable.

• Thus, using the reference is the same as using the variable.

• int& d = c is to declare d as c’s reference.

– This & is different from the & operator which returns a variable’s address.

• int& d = 10 is an error.

– A literal cannot have an alias!

int c = 10;
int& d = c; // declare d as c’s reference
d = 20;
cout << c << endl; // 20

Basics of pointers Call by reference/pointer

Arrays and pointer arithmetic Dynamic memory allocation (DMA)

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 20 / 47

Call by reference

• Now we know how to change a
parameter’s value:

– Instead of declaring a usual
local variable as a parameter,
declare a reference variable.

• This is to “call by reference”.

void swap (int& x, int& y);
int main()
{
int a = 10, b = 20;
cout << a << " " << b << endl;
swap(a, b);
cout << a << " " << b << endl;

}
void swap (int& x, int& y)
{
int temp = x;
x = y;
y = temp;

}

Basics of pointers Call by reference/pointer

Arrays and pointer arithmetic Dynamic memory allocation (DMA)

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 21 / 47

Call by reference

• Thus we can call by reference and modify our parameters’ value.

• When calling by reference, the only thing
you have to do is to add an & in the

parameter declaration in the function
header.

• Mostly people use references only to
call by reference.

• View the & in declaration as a part of type.

– I use int& a = b; instead of int &a = b;.

Basics of pointers Call by reference/pointer

Arrays and pointer arithmetic Dynamic memory allocation (DMA)

void swap (int& x, int& y);
int main()
{
int a = 10, b = 20;
swap(a, b);

}

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 22 / 47

Call by pointers

• To call by pointers:

– Declare a pointer variable as a parameter.

– Pass a pointer variable or an address (returned by &) at invokation.

• For the swap() example:

• Invocation becomes swap(&a, &b);

void swap(int* ptrA, int* ptrB)
{
int temp = *ptrA;
*ptrA = *ptrB;
*ptrB = temp;

}

Basics of pointers Call by reference/pointer

Arrays and pointer arithmetic Dynamic memory allocation (DMA)

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 23 / 47

Call by pointers

• How about the following implementation?

– Invocation: swap(&a, &b);

• Will the two arguments be swapped? What really happens?

void swap(int* ptrA, int* ptrB)
{
int* temp = ptrA;
ptrA = ptrB;
ptrB = temp;

}

Basics of pointers Call by reference/pointer

Arrays and pointer arithmetic Dynamic memory allocation (DMA)

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 24 / 47

Call by pointers

• The principle behind calling by reference and calling by pointer is the same.

• You can view calling by reference as a special tool made by using pointers.

• Do not mix references and pointers!

– E.g., we cannot pass a pointer variable or an address to a reference!

• You can use calling by reference in most situations, and it is clearer and more
convenient than calling by pointer.

– When you just want to modify arguments or return several values, call by
reference.

– When you really have to do something by pointers, call by pointer.

Basics of pointers Call by reference/pointer

Arrays and pointer arithmetic Dynamic memory allocation (DMA)

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 25 / 47

Outline

• The basics of pointers

• Call by reference/pointer

• Arrays and pointer arithmetic

• Dynamic memory allocation (DMA)

Basics of pointers Call by reference/pointer

Arrays and pointer arithmetic Dynamic memory allocation (DMA)

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 26 / 47

Pointers and arrays

• An array variable is a pointer!

– It records the address of the first element of the array.

– When passing an array, we pass a pointer.

– The array indexing operator [] indicates offsetting.

• To further understand this issue, let’s study pointer arithmetic.

– Using +, –, ++, and –– on pointers.

Basics of pointers Call by reference/pointer

Arrays and pointer arithmetic Dynamic memory allocation (DMA)

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 27 / 47

Pointer arithmetic

• Usually, one arbitrary address
returned by performing arithmetic
on a pointer variable is useless.

• The arithmetic is useful (and
should be used) only when you can
predict a variable’s address.

– In particular, when variables
are stored consecutively.

int a = 10;
int* ptr = &a;
cout << ptr++;
// just an address
// we don't know what's here

cout << *ptr;
// dangerous!

Basics of pointers Call by reference/pointer

Arrays and pointer arithmetic Dynamic memory allocation (DMA)

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 28 / 47

Pointer Arithmetic: ++ and --

• ++: Increment the pointer variable’s value by the number of bytes occupied by a

variable in this type (i.e., point to the next variable).

– E.g., for integer pointers, the value (an address) increases by 4 (bytes).

• --: Decrement the pointer variable’s value by the number of bytes a variable in

this type occupies (i.e., point to the previous variable).

double a[3] = {10.5, 11.5, 12.5};
double* b = &a[0];
cout << *b << " " << b << endl; // 10.5
b = b + 2;
cout << *b << " " << b << endl; // 12.5
b--;
cout << *b << " " << b << endl; // 11.5

Basics of pointers Call by reference/pointer

Arrays and pointer arithmetic Dynamic memory allocation (DMA)

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 29 / 47

Pointer Arithmetic: -

• We cannot add two address.

• However, we can find the difference of two addresses.

double a[3] = {10.5, 11.5, 12.5};
double* b = &a[0];
double* c = &a[2];
cout << c - b << endl; // 2, not 16!

Basics of pointers Call by reference/pointer

Arrays and pointer arithmetic Dynamic memory allocation (DMA)

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 30 / 47

Pointers and arrays

• Changing the value stored in a pointer is dangerous:

int y[3] = {1, 2, 3};
int* x = y;
for(int i = 0; i < 3; i++)
cout << *(x + i) << " "; // 1 2 3

for(int i = 0; i < 3; i++)
cout << *(x++) << " "; // 1 2 3

for(int i = 0; i < 3; i++)
cout << *(x + i) << " "; // unpredictable

Basics of pointers Call by reference/pointer

Arrays and pointer arithmetic Dynamic memory allocation (DMA)

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 31 / 47

Indexing and pointer arithmetic

• The array indexing operator [] is just an interface for doing pointer arithmetic.

– An array variable (e.g., x) stores an address, but ++ and --work only on

pointer variables.

• Interface: a (typically safer and easier) way of completing a task.

– x[i] and *(x + i) are identical.

– But using the former is safer and easier.

int x[3] = {1, 2, 3};
for(int i = 0; i < 3; i++)
cout << x[i] << " "; // x[i] == *(x + i)

for(int i = 0; i < 3; i++)
cout << *(x++) << " "; // error!

Basics of pointers Call by reference/pointer

Arrays and pointer arithmetic Dynamic memory allocation (DMA)

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 32 / 47

Example: insertion sort

• Consider the insertion sort taught last time.

– Given a unsorted array A of length n, we first sort A[0:(n – 2)], and then
insert A[n – 1] to the sorted part.

– To complete this task, we do this recursively.

• What if we want to first sort A[1:(n – 1)], and then insert A[0]?

• We will need to implement a function:

– void insertionSort(int array[], const int n);

– Given array, each time when we (recursively) invoke it, we pass a shorter
array formed by elements from array[1] to array[n - 1].

– How?

Basics of pointers Call by reference/pointer

Arrays and pointer arithmetic Dynamic memory allocation (DMA)

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 33 / 47

Example: insertion sort

Basics of pointers Call by reference/pointer

Arrays and pointer arithmetic Dynamic memory allocation (DMA)

void insertionSort(int array[], const int n) {
if(n > 1) {
insertionSort(array + 1, n - 1);
int num1 = array[0];
int i = 1;
for(; i < n; i++) {
if(array[i] < num1)
array[i - 1] = array[i];

else
break;

}
array[i - 1] = num1;

}
}

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 34 / 47

Outline

• The basics of pointers

• Call by reference/pointer

• Arrays and pointer arithematic

• Dynamic memory allocation (DMA)

Basics of pointers Call by reference/pointer

Arrays and pointer arithmetic Dynamic memory allocation (DMA)

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 35 / 47

Static memory allocation

• In C/C++, we declare an array by specifying it’s length as a constant variable or
a literal.

– int a[100];

• A memory space will be allocated to an array during the compilation time.

– 400 bytes will be allocated for the above statement.

• This is called “static memory allocation”.

• We may decide the length of an array “dynamically”.

– That is, during the run time.

• To do so, we must use a different syntax.

– All types of variables may also be declared in this way.

Basics of pointers Call by reference/pointer

Arrays and pointer arithmetic Dynamic memory allocation (DMA)

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 36 / 47

Dynamic memory allocation

• The operator new allocates a memory space and returns the address.

– In C, we use a different keyword melloc.

• new int; allocates 4 bytes without recording the address.

• int* a = new int;makes a store the address of the space.

• int* a = new int(5);makes the space contains 5 as the value.

• int* a = new int[5]; allocates 20 bytes (for 5 integers).

– a points to the first integer.

• Dynamically allocated arrays cannot be initialized with a single statement.

– A loop, for example, is needed.

Basics of pointers Call by reference/pointer

Arrays and pointer arithmetic Dynamic memory allocation (DMA)

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 37 / 47

Dynamic memory allocation

• All of these spaces are allocated during the run time.

• So we may write

• This allocates a space according to the input from users.

int len = 0;
cin >> len;
int* a = new int[len];

Basics of pointers Call by reference/pointer

Arrays and pointer arithmetic Dynamic memory allocation (DMA)

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 38 / 47

Dynamic memory allocation

• A space allocated during the run time has no name!

– On the other hand, every space allocated during
compilation time has a name.

• To access a dynamically-allocated space, we use a
pointer to store its address.

int len = 0;
cin >> len; // 3
int* a = new int[len];
for (int i = 0; i < len; i++)
a[i] = i + 1;

Address Identifier Value

0x20c644

N/A

1

0x20c648 2

0x20c64c 3

0x20c650

0x20c654

0x20c658 len 3

0x20c65c

0x20c660
a 0x20c644

0x20c664

Memory

Basics of pointers Call by reference/pointer

Arrays and pointer arithmetic Dynamic memory allocation (DMA)

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 39 / 47

Example: Fibonacci sequence

• Recall the repetitive implementation
of generating the Fibonacci sequence.

• After we get the value of sequence
length n, we dynamically declare an
array of length n.

• Then just use that array!

double fibRepetitive (int n)
{
if (n == 1)
return 1;

else if (n == 2)
return 1;

double* fib = new double[n];
fib[0] = 1;
fib[1] = 1;
for (int i = 2; i < n; i++)
fib[i] = fib[i - 1] + fib[i - 2];

double result = fib[n - 1];
delete[] fib; // to be explained
return result;

}

Basics of pointers Call by reference/pointer

Arrays and pointer arithmetic Dynamic memory allocation (DMA)

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 40 / 47

Memory leak

• For spaces allocated during the
compilation time, the system will release
these spaces automatically when the
corresponding variables no longer exist.

• For spaces allocated during the run time,
the system will NOT release these spaces
unless it is asked to do so.

– Because the space has no name!

void func (int a)
{
double b;

} // 4 + 8 bytes are released

void func()
{
int* bPtr = new int[10];

}
// 8 bytes for bPtr are released
// 40 bytes for integers are not

Basics of pointers Call by reference/pointer

Arrays and pointer arithmetic Dynamic memory allocation (DMA)

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 41 / 47

Memory leak

• Programmers must keep a record for all spaced allocated dynamically.

• This problem is called memory leak.

– We lose the control of allocated spaces.

– These spaces are wasted.

– They will not be released unit the program ends.

double* b = new double;
*b = 5.2;
double c = 10.6;
b = &c; // now no one can access

// the space containing 5.2

Basics of pointers Call by reference/pointer

Arrays and pointer arithmetic Dynamic memory allocation (DMA)

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 42 / 47

Memory leak

• Try this carefully!

– The outcome may be different
on your computer.

#include <iostream>
using namespace std;

int main()
{
for(int i = 0; ; i++)
{
int* ptr = new int[10000];
cout << i << "\n";
// delete [] ptr;

}
return 0;

}

Basics of pointers Call by reference/pointer

Arrays and pointer arithmetic Dynamic memory allocation (DMA)

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 43 / 47

Releasing spaces manually

• The delete operator will

release a dynamically-
allocated space.

• The delete operator will

do nothing to the pointer.
To avoid reuse the
released space, set the
pointer to NULL.

int* a = new int;
delete a; // release 4 bytes
int* b = new int[5];
delete b; // release only 4 bytes!

// Unpredictable results may happen
delete [] b; // release all 20 bytes

int* a = new int;
delete a; // a is still pointing to the address
a = NULL; // now a points to nothing
int* b = new int[5];
delete [] b; // b is still pointing to the address
b = NULL; // now b points to nothing

Basics of pointers Call by reference/pointer

Arrays and pointer arithmetic Dynamic memory allocation (DMA)

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 44 / 47

Good programming style

• Use DMA for arrays with no predetermined length.

– Even though Dev-C++ (and many other compilers) converts

to

• To avoid memory leak:

– Whenever you write a new statement, add a delete statement below

immediately (unless you know you really do not need it).

– Whenever you want to change the value of a pointer, check whether
memory leak occurs.

– Whenever you write a delete statement, set the pointer to NULL.

Basics of pointers Call by reference/pointer

Arrays and pointer arithmetic Dynamic memory allocation (DMA)

int a = 10;
int b[a];

int a = 10;
int* b = new int[a];

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 45 / 47

Two-dimensional dynamic arrays

• With static arrays, we may create matrices as two-dimensional arrays.

• An m by n two-dimensional array has:

– m rows (single-dimensional arrays).

– Each row has n elements.

• With dynamic arrays, we now may create matrices with different row lengths.

– We may still have m rows.

– Now each row may have different number of elements.

– E.g., a lower triangular matrix.

Basics of pointers Call by reference/pointer

Arrays and pointer arithmetic Dynamic memory allocation (DMA)

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 46 / 47

Example: lower triangular arrays

int main()
{
int r = 10;
int** array = new int*[r];
for(int i = 0; i < r; i++)
{
array[i] = new int[i + 1];
for(int j = 0; j <= i; j++)
array[i][j] = j + 1;

}
print(array, r);
return 0;

}

#include <iostream>
using namespace std;

int print(int** arr, int r)
{
for(int i = 0; i < r; i++)
{
for(int j = 0; j < i; j++)
cout << arr[i][j] << " ";

cout << "\n";
}

}

Basics of pointers Call by reference/pointer

Arrays and pointer arithmetic Dynamic memory allocation (DMA)

Ling-Chieh Kung (NTU IM)Programming Design – Pointers 47 / 47

A pointer for pointers

• int* array = new int[10]; declares a pointer for integers.

• int** array = new int*[10]; declares a pointer for integer pointers!

– The type of array[0] is int*.

– The type of array[1] is int*.

• Then each of these int*may point to one or multiple integers.

– And their lengths can be different.

int r = 10;
int** array = new int*[r];
for(int i = 0; i < r; i++)
array[i] = new int[i + 1];

Basics of pointers Call by reference/pointer

Arrays and pointer arithmetic Dynamic memory allocation (DMA)

	Programming Design�Pointers
	Outline
	Pointers
	Sizes of pointers
	Pointer assignment
	Variables in memory
	Address operators
	Address operators
	Address operators and NULL
	Address operators and NULL
	Address operators and NULL
	& and * cancel each other
	Good programming style
	Good programming style
	Good programming style
	Outline
	References and pointers
	References and pointers
	Call by reference
	Call by reference
	Call by reference
	Call by pointers
	Call by pointers
	Call by pointers
	Outline
	Pointers and arrays
	Pointer arithmetic
	Pointer Arithmetic: ++ and --
	Pointer Arithmetic: -
	Pointers and arrays
	Indexing and pointer arithmetic
	Example: insertion sort
	Example: insertion sort
	Outline
	Static memory allocation
	Dynamic memory allocation
	Dynamic memory allocation
	Dynamic memory allocation
	Example: Fibonacci sequence
	Memory leak
	Memory leak
	Memory leak
	Releasing spaces manually
	Good programming style
	Two-dimensional dynamic arrays
	Example: lower triangular arrays
	A pointer for pointers

