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Pointers

• A pointer is a variable which stores a memory address.

– An array variable is a pointer. 

• To declare a pointer, use *. 

• Examples:

– These pointers will store addresses. 

– These pointers will store addresses of int/double variables. 

• We may point to any type. 

• To point to different types, use different types of pointers. 

type pointed* pointer name; type pointed *pointer name;

int *ptrInt; double* ptrDou;
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Sizes of pointers

• All pointers have the same size. 

– In a 32-bit computer, a pointer is allocated 4 bytes.

– In a 64-bit computer, a pointer is allocated 8 bytes.

• The length of pointers decides the maximum size of the memory space. 

– 32 bits: 232 bytes = 4GB. 

– 64 bits: 264 bytes = ?

int* p1 = 0;
cout << sizeof(p1) << endl; // 8
double* p2 = 0;
cout << sizeof(p2) << endl; // 8
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Pointer assignment

• We use the address-of operator & to obtain a variable’s address:

• The address-of operator & returns the (beginning) address of a variable. 

• Example:

– ptr points to a, i.e., ptr
stores the address of a. 

• When assigning an address, the two types must match. 

pointer name = &variable name
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int a = 5;
int* ptr = &a;

int a = 5;
double* ptr = &a; // error! 
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• int a = 5;

• double b = 10.5;

• int* aPtr = &a;

• double* bPtr = &b;

• cout << &a; // 0x20c644

• cout << &b; // 0x20c660

• cout << &aPtr; // 0x20c658

• cout << &bPtr; // 0x20c64c

Variables in memory

Address Identifier Value

Memory
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0x20c64c
bPtr 0x20c660

0x20c650

0x20c658
aPtr 0x20c644

0x20c65c

0x20c660
b 10.5

0x20c664

0x20c644 a 5
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Address operators

• There are two address operators.

– &: The address-of operator. It returns a variable’s address.

– *: The dereference operator. It returns the pointed variable (not the value!).

• For int a = 5:

– a equals 5.

– &a returns an address (e.g., 0x22ff78).

• For int* ptrA = &a:

– ptrA stores an address (e.g., 0x22ff78).

– &ptrA returns the pointer’s address (e.g., 0x21aa74). This has nothing to do 
with the pointed variable a.  

– *ptrA returns a, the variable pointed by the pointer. 

Basics of pointers Call by reference/pointer

Arrays and pointer arithmetic Dynamic memory allocation (DMA)



Ling-Chieh Kung (NTU IM)Programming Design – Pointers 8 / 47

Address operators

• Example:

int a = 10;
int* p1 = &a;
cout << "value of a = " << a << endl;
cout << "value of p1 = " << p1 << endl;
cout << "address of a = " << &a << endl;
cout << "address of p1 = " << &p1 << endl;
cout << "value of the variable pointed by p1 = " << *p1 << endl;
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Address operators and NULL

• &: returns a variable’s address.

– We cannot use &100, &(a++) (because a++ returns the value of a).

– We can only perform & on a variable.

– We cannot assign value to &x (&x is a value!).

– We can get a usual variable’s or a pointer variable’s address.

• *: returns the pointed variable, not its value. 

– We can perform * on a pointer variable. 

– We cannot perform * on a usual variable.

– We cannot change a variable’s address. No operation can do this.

• A pointer pointing to nothing should be assigned NULL or 0. 
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• Examples:

Address operators and NULL

int a = 10;
int* ptr = NULL; 
ptr = &a;
cout << *ptr; // ?
*ptr = 5; 
cout << a;    // ?
a = 18; 
cout << *ptr; // ?

int a = 10;
int* ptr1 = NULL; 
int* ptr2 = NULL;
ptr1 = ptr2 = &a;
cout << *ptr1; // ?
*ptr2 = 5;     
cout << *ptr1; // ?
(*ptr1)++; 
cout << a;     // ?
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Address operators and NULL

• Dereferencing a null pointer shutdowns the program (a run-time error). 

int* p2 = NULL;
cout << "value of p2 = " << p2 << endl;
cout << "address of p2 = " << &p2 << endl;
cout << "the variable pointed by p2 = " << *p2 << endl;
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& and * cancel each other

• What is *&x if x is a variable? 

– &x is the address of x. 

– *(&x) is the variable stored in that address. 

– So *(&x) is x. 

• What is &*x if x is a pointer? 

– If x is a pointer, *x is the variable stored at x (x stores an address!). 

– &*x is the address of *x, which is exactly x. 

• What is &*x if x is not a pointer?

Basics of pointers Call by reference/pointer
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Good programming style

• Initialize a pointer variable as 0 or NULL if no initial value is available.

– 0 is the standard in C++, while NULL is the standard in C. But they are the 

same for representing “null pointer”.

– By using NULL, everyone knows the variable must be a pointer, and you are 

not talking about a number or character.

• Without an initialization, a pointer points to somewhere... And we do not know 
where it is! 

– Accessing an unknown address results in unpredictable results. 

• In general, when you get a run time error or different outcomes for multiple 
executions, check your arrays and pointers. 
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Good programming style

• As a bad example: 

Basics of pointers Call by reference/pointer
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#include <iostream>
using namespace std;

int main()
{
int* ptrArray[10000];
for(int i = 0; i < 10000; i++)
cout << i << " " << *ptrArray[i] << "\n";

return 0;
}
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Good programming style

• When we use * in declaring a pointer, that * is not a dereference operator. 

– It is just a special syntax for declaring a pointer variable.

• I prefer to view int* as a type, which represents an “integer pointer”.

• Therefore, I prefer “int* p” to “int *p”. 

• Be careful: 

• I use multiple statements to declare multiple pointers. 

int* p, q;   // p is int*, q is int
int *p, *q;  // two pointers
int* p, *q;  // two pointers
int* p, * q; // two pointers
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References and pointers

• Recall this example: void swap (int x, int y);
int main()
{
int a = 10, b = 20;
cout << a << " " << b << endl; 
swap(a, b);
cout << a << " " << b << endl; 

}
void swap (int x, int y)
{
int temp = x;
x = y;
y = temp;

}

Basics of pointers Call by reference/pointer
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References and pointers

• When invoking a function and passing parameters, the default scheme is to “call 
by value” (or “pass by value”).

– The function declares its own local variables, using a copy of the arguments’ 
values as initial values. 

– Thus we swapped the two local variables declared in the function, not the 
original two we want to swap.

• To solve this, we can use “call by reference” or “call by pointer.”

– They are somewhat different, but the principle is the same. 

– It is enough to know and use only one of them. 
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Call by reference

• A reference is a variable’s alias. 

• The reference is another variable that refers to the variable.

• Thus, using the reference is the same as using the variable.

• int& d = c is to declare d as c’s reference.

– This & is different from the & operator which returns a variable’s address. 

• int& d = 10 is an error. 

– A literal cannot have an alias!

int c = 10;
int& d = c; // declare d as c’s reference
d = 20;
cout << c << endl; // 20

Basics of pointers Call by reference/pointer
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Call by reference

• Now we know how to change a 
parameter’s value:

– Instead of declaring a usual 
local variable as a parameter, 
declare a reference variable. 

• This is to “call by reference”.  

void swap (int& x, int& y);
int main()
{
int a = 10, b = 20;
cout << a << " " << b << endl; 
swap(a, b);
cout << a << " " << b << endl; 

}
void swap (int& x, int& y)
{
int temp = x;
x = y;
y = temp;

}
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Call by reference

• Thus we can call by reference and modify our parameters’ value.

• When calling by reference, the only thing
you have to do is to add an & in the 

parameter declaration in the function 
header.

• Mostly people use references only to 
call by reference. 

• View the & in declaration as a part of type. 

– I use int& a = b; instead of int &a = b;.

Basics of pointers Call by reference/pointer
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void swap (int& x, int& y);
int main()
{
int a = 10, b = 20;
swap(a, b);

}
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Call by pointers

• To call by pointers: 

– Declare a pointer variable as a parameter.

– Pass a pointer variable or an address (returned by &) at invokation.

• For the swap() example: 

• Invocation becomes swap(&a, &b);

void swap(int* ptrA, int* ptrB)
{
int temp = *ptrA;
*ptrA = *ptrB;
*ptrB = temp;

}

Basics of pointers Call by reference/pointer
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Call by pointers

• How about the following implementation? 

– Invocation: swap(&a, &b);

• Will the two arguments be swapped? What really happens? 

void swap(int* ptrA, int* ptrB)
{
int* temp = ptrA;
ptrA = ptrB;
ptrB = temp;

}

Basics of pointers Call by reference/pointer
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Call by pointers

• The principle behind calling by reference and calling by pointer is the same.

• You can view calling by reference as a special tool made by using pointers.

• Do not mix references and pointers! 

– E.g., we cannot pass a pointer variable or an address to a reference!

• You can use calling by reference in most situations, and it is clearer and more 
convenient than calling by pointer.

– When you just want to modify arguments or return several values, call by 
reference.

– When you really have to do something by pointers, call by pointer.

Basics of pointers Call by reference/pointer
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Pointers and arrays

• An array variable is a pointer! 

– It records the address of the first element of the array. 

– When passing an array, we pass a pointer.

– The array indexing operator [] indicates offsetting.  

• To further understand this issue, let’s study pointer arithmetic. 

– Using +, –, ++, and –– on pointers. 

Basics of pointers Call by reference/pointer
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Pointer arithmetic

• Usually, one arbitrary address 
returned by performing arithmetic 
on a pointer variable is useless.

• The arithmetic is useful (and 
should be used) only when you can 
predict a variable’s address. 

– In particular, when variables 
are stored consecutively. 

int a = 10;
int* ptr = &a;
cout << ptr++;  
// just an address
// we don't know what's here

cout << *ptr; 
// dangerous! 

Basics of pointers Call by reference/pointer

Arrays and pointer arithmetic Dynamic memory allocation (DMA)



Ling-Chieh Kung (NTU IM)Programming Design – Pointers 28 / 47

Pointer Arithmetic: ++ and --

• ++: Increment the pointer variable’s value by the number of bytes occupied by a 

variable in this type (i.e., point to the next variable). 

– E.g., for integer pointers, the value (an address) increases by 4 (bytes).

• --: Decrement the pointer variable’s value by the number of bytes a variable in 

this type occupies (i.e., point to the previous variable).

double a[3] = {10.5, 11.5, 12.5};
double* b = &a[0];
cout << *b << " " << b << endl;  // 10.5
b = b + 2; 
cout << *b << " " << b << endl;  // 12.5
b--;
cout << *b << " " << b << endl;  // 11.5
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Pointer Arithmetic: -

• We cannot add two address.

• However, we can find the difference of two addresses.

double a[3] = {10.5, 11.5, 12.5};
double* b = &a[0];
double* c = &a[2];
cout << c - b << endl; // 2, not 16!

Basics of pointers Call by reference/pointer
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Pointers and arrays

• Changing the value stored in a pointer is dangerous: 

int y[3] = {1, 2, 3};
int* x = y;
for(int i = 0; i < 3; i++)
cout << *(x + i) << " "; // 1 2 3

for(int i = 0; i < 3; i++)
cout << *(x++) << " "; // 1 2 3

for(int i = 0; i < 3; i++)
cout << *(x + i) << " "; // unpredictable

Basics of pointers Call by reference/pointer
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Indexing and pointer arithmetic

• The array indexing operator [] is just an interface for doing pointer arithmetic. 

– An array variable (e.g., x) stores an address, but ++ and --work only on 

pointer variables. 

• Interface: a (typically safer and easier) way of completing a task. 

– x[i] and *(x + i) are identical. 

– But using the former is safer and easier. 

int x[3] = {1, 2, 3};
for(int i = 0; i < 3; i++)
cout << x[i] << " "; // x[i] == *(x + i) 

for(int i = 0; i < 3; i++)
cout << *(x++) << " "; // error!

Basics of pointers Call by reference/pointer
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Example: insertion sort

• Consider the insertion sort taught last time. 

– Given a unsorted array A of length n, we first sort A[0:(n – 2)], and then 
insert A[n – 1] to the sorted part. 

– To complete this task, we do this recursively. 

• What if we want to first sort A[1:(n – 1)], and then insert A[0]? 

• We will need to implement a function:

– void insertionSort(int array[], const int n);

– Given array, each time when we (recursively) invoke it, we pass a shorter 
array formed by elements from array[1] to array[n - 1].

– How? 

Basics of pointers Call by reference/pointer
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Example: insertion sort

Basics of pointers Call by reference/pointer

Arrays and pointer arithmetic Dynamic memory allocation (DMA)

void insertionSort(int array[], const int n) {
if(n > 1) {
insertionSort(array + 1, n - 1);
int num1 = array[0];
int i = 1;
for(; i < n; i++) {
if(array[i] < num1)
array[i - 1] = array[i];

else
break;

}
array[i - 1] = num1;

}
}
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Static memory allocation

• In C/C++, we declare an array by specifying it’s length as a constant variable or 
a literal.

– int a[100];

• A memory space will be allocated to an array during the compilation time. 

– 400 bytes will be allocated for the above statement. 

• This is called “static memory allocation”. 

• We may decide the length of an array “dynamically”. 

– That is, during the run time. 

• To do so, we must use a different syntax. 

– All types of variables may also be declared in this way. 

Basics of pointers Call by reference/pointer
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Dynamic memory allocation

• The operator new allocates a memory space and returns the address. 

– In C, we use a different keyword melloc. 

• new int; allocates 4 bytes without recording the address.

• int* a = new int;makes a store the address of the space.

• int* a = new int(5);makes the space contains 5 as the value.

• int* a = new int[5]; allocates 20 bytes (for 5 integers). 

– a points to the first integer. 

• Dynamically allocated arrays cannot be initialized with a single statement. 

– A loop, for example, is needed. 
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Dynamic memory allocation

• All of these spaces are allocated during the run time. 

• So we may write

• This allocates a space according to the input from users. 

int len = 0;
cin >> len;
int* a = new int[len];

Basics of pointers Call by reference/pointer
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Dynamic memory allocation

• A space allocated during the run time has no name!

– On the other hand, every space allocated during 
compilation time has a name. 

• To access a dynamically-allocated space, we use a 
pointer to store its address. 

int len = 0;
cin >> len; // 3
int* a = new int[len];
for (int i = 0; i < len; i++)
a[i] = i + 1;

Address Identifier Value

0x20c644

N/A

1

0x20c648 2

0x20c64c 3

0x20c650

0x20c654

0x20c658 len 3

0x20c65c

0x20c660
a 0x20c644

0x20c664

Memory

Basics of pointers Call by reference/pointer
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Example: Fibonacci sequence

• Recall the repetitive implementation
of generating the Fibonacci sequence. 

• After we get the value of sequence
length n, we dynamically declare an
array of length n. 

• Then just use that array! 

double fibRepetitive (int n)
{
if (n == 1)
return 1;

else if (n == 2)
return 1;

double* fib = new double[n];
fib[0] = 1;
fib[1] = 1;
for (int i = 2; i < n; i++)
fib[i] = fib[i - 1] + fib[i - 2];

double result = fib[n - 1];
delete[] fib; // to be explained
return result;

}

Basics of pointers Call by reference/pointer
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Memory leak

• For spaces allocated during the 
compilation time, the system will release 
these spaces automatically when the 
corresponding variables no longer exist. 

• For spaces allocated during the run time, 
the system will NOT release these spaces 
unless it is asked to do so. 

– Because the space has no name!

void func (int a)
{
double b;

} // 4 + 8 bytes are released

void func()
{
int* bPtr = new int[10];

}
// 8 bytes for bPtr are released 
// 40 bytes for integers are not

Basics of pointers Call by reference/pointer
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Memory leak

• Programmers must keep a record for all spaced allocated dynamically.

• This problem is called memory leak. 

– We lose the control of allocated spaces. 

– These spaces are wasted. 

– They will not be released unit the program ends. 

double* b = new double;
*b = 5.2;
double c = 10.6;
b = &c; // now no one can access 

// the space containing 5.2

Basics of pointers Call by reference/pointer
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Memory leak

• Try this carefully!

– The outcome may be different
on your computer.  

#include <iostream>
using namespace std;

int main()
{
for(int i = 0; ; i++)
{
int* ptr = new int[10000];
cout << i << "\n";
// delete [] ptr;

}
return 0;

}

Basics of pointers Call by reference/pointer
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Releasing spaces manually

• The delete operator will 

release a dynamically-
allocated space.

• The delete operator will 

do nothing to the pointer. 
To avoid reuse the 
released space, set the 
pointer to NULL. 

int* a = new int;
delete a; // release 4 bytes
int* b = new int[5]; 
delete b; // release only 4 bytes! 

// Unpredictable results may happen
delete [] b; // release all 20 bytes

int* a = new int;
delete a;  // a is still pointing to the address
a = NULL;  // now a points to nothing
int* b = new int[5]; 
delete [] b; // b is still pointing to the address
b = NULL;    // now b points to nothing

Basics of pointers Call by reference/pointer

Arrays and pointer arithmetic Dynamic memory allocation (DMA)



Ling-Chieh Kung (NTU IM)Programming Design – Pointers 44 / 47

Good programming style

• Use DMA for arrays with no predetermined length.

– Even though Dev-C++ (and many other compilers) converts

to

• To avoid memory leak: 

– Whenever you write a new statement, add a delete statement below 

immediately (unless you know you really do not need it). 

– Whenever you want to change the value of a pointer, check whether 
memory leak occurs. 

– Whenever you write a delete statement, set the pointer to NULL. 

Basics of pointers Call by reference/pointer
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int a = 10;
int b[a];

int a = 10;
int* b = new int[a];
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Two-dimensional dynamic arrays

• With static arrays, we may create matrices as two-dimensional arrays. 

• An m by n two-dimensional array has: 

– m rows (single-dimensional arrays). 

– Each row has n elements. 

• With dynamic arrays, we now may create matrices with different row lengths. 

– We may still have m rows. 

– Now each row may have different number of elements. 

– E.g., a lower triangular matrix. 

Basics of pointers Call by reference/pointer
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Example: lower triangular arrays

int main()
{
int r = 10;
int** array = new int*[r];
for(int i = 0; i < r; i++)
{
array[i] = new int[i + 1];
for(int j = 0; j <= i; j++)
array[i][j] = j + 1;

}
print(array, r);
return 0;

}

#include <iostream>
using namespace std;

int print(int** arr, int r)
{
for(int i = 0; i < r; i++)
{
for(int j = 0; j < i; j++)
cout << arr[i][j] << " ";

cout << "\n";
}

}

Basics of pointers Call by reference/pointer
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A pointer for pointers

• int* array = new int[10]; declares a pointer for integers. 

• int** array = new int*[10]; declares a pointer for integer pointers!

– The type of array[0] is int*. 

– The type of array[1] is int*. 

• Then each of these int*may point to one or multiple integers. 

– And their lengths can be different.

int r = 10;
int** array = new int*[r];
for(int i = 0; i < r; i++)
array[i] = new int[i + 1];

Basics of pointers Call by reference/pointer

Arrays and pointer arithmetic Dynamic memory allocation (DMA)
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