Motivations

Basic ideas and the first example

Virtual functions

Programming Design
Polymorphism
Ling-Chieh Kung

Department of Information Management
National Taiwan University

Programming Design — Polymorphism

1/34

Ling-Chieh Kung (NTU IM)

Motivations Basic ideas and the first example Virtual functions

Outline

« Motivation
 Basic ideas and the first example
 Virtual functions

Programming Design — Polymorphism 2134 Ling-Chieh Kung (NTU IM)

Motivations Basic ideas and the first example Virtual functions

An RPG game

* Inatypical Role-Playing Game (RPG), a player plays the role of a character,
who keep beating enemies (monsters, bad guys, or other players' characters).

— By beating enemies, one earns experience points to advance to higher
levels and become stronger.

* Inmany RPGs, one can choose the occupation for her character(s). The
occupation typically affects the ability of a character (e.g., a warrior and a
wizard are quite different).

— Characters with different occupations have different attributes and behave
differently. However, they are all characters.

« (Given a class Character that defines some general features of an RPG
character, let’s create two new classes Warrior and Wizard

Programming Design — Polymorphism 3/34 Ling-Chieh Kung (NTU IM)

Motivations Basic ideas and the first example Virtual functions

Class Character

« The class Character includes the name, current level, accumulated experience
points, and three ability levels: power, knowledge, and luck.

— When a character joins your team, she/he may be at any level.

— For all characters in our game, the number of experience points required for
level k is 100(k — 1)2. The number 100 is stored as a static constant.

 There is a constructor:

— To create a character, we must specify all its attributes except the experience
point: A new character at level k always starts with 100(k — 1)? experience
points.

« Thereis a public function print ():
— It prints out the current status of a character.

Programming Design — Polymorphism 4/34 Ling-Chieh Kung (NTU IM)

Motivations Basic ideas and the first example Virtual functions

Class Character

« There is a public function beatMonster (int exp):
— Itis invoked when the character beats a monster.
— exp IS the number of experience points earns in this battle.

— This function increments the accumulated experience points and checks
whether there should be a level up. If so, a private member function
levelUp () is invoked.

« There is a private function levelUp():
— The character's 1lewvel will be incremented.

— However, her abilities will remain the same because characters of different
occupations should get different improvements.
— This should be specified in Warrior and Wizard

Programming Design — Polymorphism 5/34 Ling-Chieh Kung (NTU IM)

Motivations Basic ideas and the first example Virtual functions

Class Character

class Character
{
protected:
string name;
int lewvel;
int exp;
int power;
int knowledge;
int luck;
static const int expForlevel = 100;
void levelUp(int pInc, int kInc, int lInc); // private member function
public:
Character (string n, int lv, int po, int kn, int 1lu);
void beatMonster (int exp) ;
void print() ;
string getName() ;

};

Programming Design — Polymorphism 6/34 Ling-Chieh Kung (NTU IM)

Motivations Basic ideas and the first example Virtual functions

Class Character

Character: :Character (string n, int lv, int po, int kn, int 1lu)
: name(n), level (lv), exp(pow(lv - 1, 2) * expForlevel), power (po), knowledge(kn), luck(lu) {}
void Character: :beatMonster (int exp) {
this—>exp += exp;
while (this—>exp >= pow(this->level, 2) * expForlevel)
this->levelUp(0, 0, 0); // No improvement when advancing to the next level
}
void Character: :print() {
cout << this->name
<< ": Level " << this->level << " (" << this->exp << "/" << pow(this->level, 2) * expForlevel
<< "), " << this->power << "-" << this->knowledge << "-" << this->luck << "\n";
}
void Character: :levelUp(int pInc, int kInc, int 1Inc) {
this—>level++; this->power += pInc; this->knowledge += kInc; this->luck += lInc;
}
string Character: :getName () {
return this->name;
}

Programming Design — Polymorphism 7134 Ling-Chieh Kung (NTU IM)

Motivations Basic ideas and the first example Virtual functions

Character, Warrior, and Wizard

* Character should not be used to
create an object.

— No improvement when advancing
to the next level.

— Personal attributes for T
Improvements per level are not
defined.

* \We define two derived classes
Warrior and Wizard:

— Character IS an abstract class.

— Warrior and Wizard are
concrete classes.

Character

Warrior Wizard

Programming Design — Polymorphism 8/34 Ling-Chieh Kung (NTU IM)

Motivations Basic ideas and the first example Virtual functions

Classes Warrior and Wizard

class Warrior : public Character
{
private:
static const int powerPerlevel = 10;
static const int knowledgePerlevel = 5;
static const int luckPerlevel = 5;
public:
Warrior (string n) : Character(n, 1, powerPerlevel, knowledgePerlevel, luckPerlevel) {}
Warrior (string n, int 1lv)
: Character(n, lv, lv * powerPerlevel, lv * knowledgePerlevel, lv * luckPerlevel) {}
void print() { cout << "Warrior "; Character: :print(); }
void beatMonster (int exp) // function overriding
{
this—>exp += exp;
while (this—>exp >= pow(this->lewvel, 2) * expForlevel)
this->levelUp (powerPerlevel, knowledgePerlevel, luckPerlevel) ;

};

Programming Design — Polymorphism 9/34 Ling-Chieh Kung (NTU IM)

Motivations Basic ideas and the first example Virtual functions

Classes Warrior and Wizard

class Wizard : public Character
{
private:
static const int powerPerlevel = 4;
static const int knowledgePerlevel = 9;
static const int luckPerlevel = 7;
public:
Wizard (string n) : Character(n, 1, powerPerlevel, knowledgePerlevel, luckPerlevel) {}
Wizard (string n, int 1lv)
: Character(n, lv, lv * powerPerlevel, lv * knowledgePerlevel, lv * luckPerlevel) {}
void print() { cout << "Wizard "; Character: :print(); }
void beatMonster (int exp) // function overriding
{
this—>exp += exp;
while (this—>exp >= pow(this->lewvel, 2) * expForlevel)
this->levelUp (powerPerlevel, knowledgePerlevel, luckPerlevel) ;

};

Programming Design — Polymorphism 10/ 34 Ling-Chieh Kung (NTU IM)

Motivations Basic ideas and the first example Virtual functions

Some questions

* We may create Warrior and Wizard | class Team
objects in our program. {

— May we prevent one from private:

_ _ int warriorCount;
? 14
creating a Character object” int wizardCount;

A “team” has at most ten members. Warrior* warrior[10];
— We create two arrays, one for Wizard* wizard[10];
warriors and one for wizards. public:
Each of them has a length of 10. Team() ;
~Team() ;
— Why wasting spaces? // some other functions
};

Programming Design — Polymorphism 11/34 Ling-Chieh Kung (NTU IM)

Motivations Basic ideas and the first example Virtual functions

Some questions

 We may need to add a
warrior/wizard, let a
warrior/wizard beat a monster,
and print the current status of a
warrior/wizard.

— Characters’ names are all
different.

 Either we write two functions
for a task, or write just one.

— Two: tedious and
Inconsistent.

— One: Inefficient.

class Team
{
private:
int warriorCount;
int wizardCount;
Warrior* warrior[1l0];
Wizard* wizard[10];
public:
Team() ;
~Team() ;
void addWar (string name, int 1v);
void addWiz (string name, int 1v);
void warBeatMonster (string name, int exp);
void wizBeatMonster (string name, int exp);
void printWar (string name) ;
void printWiz (string name) ;

};

Programming Design — Polymorphism

12/34 Ling-Chieh Kung (NTU IM)

Motivations Basic ideas and the first example Virtual functions

Outline

 Motivation
« Basic ideas and the first example
* Virtual functions

Programming Design — Polymorphism 13/34 Ling-Chieh Kung (NTU IM)

Motivations Basic ideas and the first example Virtual functions

Polymorphism

« The key flaw is to create two arrays, one for warriors and one for wizards.

— May we use only one array to store the ten members?

— But Warrior and Wizard are different classes.
« While they are different classes, they have the same base class.

— They are all Characters!

— May we declare a Character array to store Warrior and Wizard objects?
« We can. This is called polymorphism.

— In C++, the way we implement polymorphism is to

“Use a variable of a parent type to
store a value of a child type.”

Programming Design — Polymorphism 14/ 34 Ling-Chieh Kung (NTU IM)

Motivations Basic ideas and the first example Virtual functions

Variables vs. values

« Let’s differentiate a variable’s type and a value’s type.
« Avariable can store values and must have a type.
— E.g., a double variable is a container which “should” store a double value.
« Avalue is the thing that is stored in a variable.
— E.g.,12.50r 7.
« Avalue has its own type, which may be different from the variable’s type.
« In C++, a parent variable can store a child object.
— A Character variable can store a Warrior or a Wizard object.
— Because a warrior/wizard is a character!

Programming Design — Polymorphism 15/ 34 Ling-Chieh Kung (NTU IM)

Motivations

Basic ideas and the first example

Virtual functions

Examples of polymorphism

« For example, we may do this:

« Or we may do this with pointers:

int main

{
Warrior w("Alice", 10);
Character c = w; // copy constructor
cout << c.getName () << endl; // Alice
return 0;

}

int main
{
Warrior w("Alice", 10);
Character* c = &w;
cout << c->getName () << endl; // Alice
return 0;
}

Programming Design — Polymorphism

16/ 34

Ling-Chieh Kung (NTU IM)

Motivations

Basic ideas and the first example

Virtual functions

Why a parent variable for a child value?

What happens to the following
program?

int main

{

Ppl(l, 2);
Ccl(, 4, 5);

Pp2 =cl; // OK: 5 will be discarded
// Cc2 =pl; // Not OK: v3 has no value
return 0;

class P

{

protected:
int x;
int y;

public:

P(int a, int b) : x(a), y() {}

// other functions
b
class P : public C
{
protected:
int z;
public:
C(int a, int b, int ¢)
// other functions
}i

:P(x,y) {z=¢c;}

Programming Design — Polymorphism

171734

Ling-Chieh Kung (NTU IM)

Motivations

Basic ideas and the first example

Virtual functions

Polymorphism with arrays

« Polymorphism is useful typically with functions or arrays:

{

int main

Character* c[3];

c[0] = new Warrior("Alice", 10);

c[1] = new Wizard("Sophie", 8);

c[2] = new Warrior ("Amy", 12);

for(int i = 0; i < 3; i++)
c[i]->print() ;

for(int i = 0; i < 3; i+t+)
delete c[1i];

// do not delete [] c;

return 0;

int main

{
Character c[3]; // error! Why?
Warrior wl("Alice", 10);
Wizard w2 ("Sophie", 8);
Warrior w3 ("Amy", 12);

c[0] = wl;
c[l] = w2;
c[2] = w3;

for(int 1 = 0; i < 3; i++)
c[i] .print() ;
return O;

Programming Design —

Polymorphism

18/34

Ling-Chieh Kung (NTU IM)

Motivations Basic ideas and the first example Virtual functions

Class Team with Polymorphism

« With polymorphism, we may redefine the class Team:

class Team class Team
{ {
private: private:
int warriorCount; int memberCount;
int wizardCount; Character* member[10];
Warrior* warrior[10]; public:
Wizard* wizard[10]; Team() ;
public: ~Team() ;
Team() ; void addMermber
~Team() ; (string name, int lv, char occupation) ;
void addWarrior (string name, int 1v); void memberBeatMonster (string name, int exp);
void addWizard(string name, int 1lv); void printMerber (string name) ;
void warriorBeatMonster (string name, int exp); };
void wizardBeatMonster (string name, int exp);
void printWarrior (string name) ;
void printWizard(string name) ;
};

Programming Design — Polymorphism 19/ 34 Ling-Chieh Kung (NTU IM)

Motivations Basic ideas and the first example Virtual functions

Class Team with Polymorphism

« With polymorphism, we may redefine the class Team:

Team: :Team() void Team: :addMember
{ (string name, int lv, char occupation)
this->memberCount = 0; {
for(int 1 = 0; i < 10; i++) if (this->memberCount < 10)
merber[i] = NULL; {
} if (occupation = 'R')
Team: : ~Team() this->member [this->memberCount] = new Warrior (name, 1lv);
{ else if (occupation = 'D')
for(int 1 = 0; this->member [this->memberCount] = new Wizard (name, 1v);
i < this->memberCount; this->memberCount++;
i+) }
delete this—>member(i]; }
}

Programming Design — Polymorphism 20/ 34 Ling-Chieh Kung (NTU IM)

Motivations

Basic ideas and the first example

Virtual functions

Class Team with Polymorphism

« With polymorphism, we may redefine the class Team:

void Team: :memberBeatMonster (string name, int exp)

{
for(int i = 0; i < this->memberCount; i++)

{
if (this->member[i] ->getName () = name)
{
this->member [i] ->beatMonster (exp) ;
break;
}
}

}

void Team: :printMenber (string name)
{ for(int i = 0; i < this->memberCount; i++)
{ if (this->menber[i] ->getName () = name)
{ this—>member[i] ->print() ;
break;
}

Programming Design — Polymorphism 21/ 34

Ling-Chieh Kung (NTU IM)

Motivations Basic ideas and the first example Virtual functions

Remaining questions

« We still cannot prevent one from creating a Character object.

« What happens to the following program: int main ()
— No “Warrior ” and “Wizard ” printed out. { Character* c[3];
— No experience point accumulated. for(int 1 =0; 1 <37 1+
c[i]->print() ;
. Why'? c[0] = new Warrior("Alice", 10);

c[1l] = new Wizard("Sophie", 8);

c[2] = new Warrior ("Amy", 12);

c[0] —>beatMonster (10000) ;

for(int 1 = 0; i < 3; i++)
c[i]->print() ;

for(int 1 = 0; i < 3; i++)
delete c[1i];

return 0;

Programming Design — Polymorphism 22/ 34 Ling-Chieh Kung (NTU IM)

Motivations

Basic ideas and the first example Virtual functions

Invoking an overridden function

Suppose a parent variable stores a
child value (or a parent pointer
pointing to a child object).

If we use the parent variable
(pointer) to invoke an overridden
function, which implementation
will be invoked?

The default setting is to invoke the
parent’s implementation.

To invoke the child’s one, we need
virtual functions.

class A int main()
{ {
public: B b;
void a() { cout << "a\n"; } A a=Db;
void £() { cout << "af\n"; } a.a();
}i a.f();
// a.b();
class B : public A return 0;
{ }
public:

void b() { cout << "b\n"; } || int main()

void £() { cout << "bf\n"; }
}; B b;

A* a = §b;
a->a() ;
a->f() ;
// a=>b();
return 0O;

Programming Design — Polymorphism

23/34 Ling-Chieh Kung (NTU IM)

Motivations Basic ideas and the first example Virtual functions

Outline

« Motivation
 Basic ideas and the first example
* Virtual functions

Programming Design — Polymorphism 24 /34 Ling-Chieh Kung (NTU IM)

Motivations Basic ideas and the first example

Virtual functions

Early binding vs. late binding

« WhenwedoA a = boraA* a = &b, we are using
polymorphism.

« ForA a = b, the system does early binding:

— aoccupies only four bytes for storing i.

— adoes not have a space for storing j.

— Its type is determined to be A at compilation.
 Fora* a = &b, the system does late binding:

— als just a pointer.

— It can point to an A object or a B object.

— Its “type” can be determined at the run time.

class A
{

protected:

int i;

public:

wvoid a() { cout << "a\n"; }
void £() { cout << "af\n"; }

};

class B : public A

{

private:
int j;

public:

wvoid b() { cout << "b\n"; }
void £() { cout << "bf\n"; }

};

Programming Design — Polymorphism 25/34

Ling-Chieh Kung (NTU IM)

Motivations Basic ideas and the first example Virtual functions

Early binding may discard values

 Why p2.print () must be the <{:1ass P

parent class’ print () ? protected:

- . int x;

int main int y;

{ public:
Ppl(l, 2); P(int a, int b) : x(a), y(®) {}
Ccl(3, 4, 5); void print() { cout << x << " " < y; }

Pp2 =cl; // OK: 5 will be discarded };
p2.print(); // must be the P::print() class P : public C
return O; {
} protected:
int z;
public:
C(int a, int b, int ¢) : P(a, b) { z=c¢c; }
void print() { cout < z; }
};

Programming Design — Polymorphism 26 /34 Ling-Chieh Kung (NTU IM)

Motivations Basic ideas and the first example Virtual functions

|_ate binding does not discard values

* Isit “possible” for p2->print () class P
. e {
to be the child class’ print () ? protected:
int x;
int main int y;
{ public:
Ppl(l, 2); P(int a, int b) : x(a), y(®) {}
Ccl(3, 4, 5); void print() { cout << x << " " < y; }

P* p2 = &l; // 5 can be accessed by p2 };
p2->print(); // P::print()? C::print()? class P : public C
return 0; {
} protected:
int z;
public:
C(int a, int b, int ¢c) : P(a, b) { z=c¢c; }
void print() { cout < z; }
};

Programming Design — Polymorphism 27 /34 Ling-Chieh Kung (NTU IM)

Motivations Basic ideas and the first example Virtual functions

Early binding vs. late binding

* But we still see the parent’s implementation being invoked. Why?

int main()

{
A a;
B b;
A* who = &a;
who->f() ; // af
who = &b;
who->f() ; // af

return O;

* To ask the system to invoke the child’s implementation, we need to declare
virtual functions.

Programming Design — Polymorphism 28 /34 Ling-Chieh Kung (NTU IM)

Motivations Basic ideas and the first example Virtual functions

Virtual functions

« Ifwe declare a parent’s member function to be virtual, its invocation priority
will be lower than a child’s (if we use late binding).

— To do so, simply add the modifier virtual into the function header:

— The child’s implementation 1s invoked! T
* No need to do that at the child’s side. {
. . private:
— A parent can declare its function as int i
a virtual function. public:
) void a() { cout << "a\n"; }
— A child cannot declare a parent’s virtual void £() { cout << "af\n"; }
function as virtual (it is of no use). ki

* In summary, we need:
— Late binding + virtual functions.

Programming Design — Polymorphism 29/ 34 Ling-Chieh Kung (NTU IM)

Motivations Basic ideas and the first example Virtual functions

Virtual functions

* [For our Character class, simply declare

beatMonster () and print () as virtual. int main
Character* c[3];

class Character for(int i = 0; i < 3; i+

{ cli]->print () ;

protected: c[0] = new Warrior("Alice", 10);
//_ e c[1] = new Wizard("Sophie", 8);

public: _ _ _ c[2] = new Warrior ("Amy", 12);
Character (string n, int lv, int po, int kn, int 1u); c[0]->beatMonstor (10000) ;
virtual void beatMonster (int exp) ; for(int i = 0; i < 3; i++)
virtual void print() ; c[i]>print();
string getName() ; for(int i = 0; i < 3; i+)

}; delete c[i];

] . return O;
* Warrior and Wizard override the two functions. | ;

Now their implementations get invoked.

Programming Design — Polymorphism 30/34 Ling-Chieh Kung (NTU IM)

Motivations Basic ideas and the first example

Virtual functions

Abstract classes

* The two virtual functions are different in their natures:
— print () is invoked in the children’s implementations.
— beatMonster () should not be invoked by any one.

* We may set beatMonster () to be a pure virtual function:

class Character

{

/...

virtual void beatMonster (int exp) = 0O;
};

— Now we do not need to implement it.
— Moreover, we cannot create Character objects!

Programming Design — Polymorphism 31/34

Ling-Chieh Kung (NTU IM)

Motivations Basic ideas and the first example Virtual functions

_ate binding Is required

« Even if we declare virtual functions, they do not work in the following program:

int main
{
Character c[3]; // Suppose we add a default constructor
Warrior wl ("Alice", 10);
Wizard w2 ("Sophie", 8);
Warrior w3 ("Amy", 12);

c[0] = wl;
c[l] = w2;
c[2] = w3;

for(int i = 0; i < 3; i+H)
c[i] .print() ;
return 0;
}

 Late binding (by using pointers) is required.

Programming Design — Polymorphism 32/34 Ling-Chieh Kung (NTU IM)

Motivations Basic ideas and the first example Virtual functions

Polymorphism is everywhere

* Recall MyVector, its overloaded operator =, and its child MyVector2D.

class MyVector int main()
{ {
// ... double d[3] = {1, 2, 3};
private: MyVector v1(3, d);
int n; MyVector2D v2(4, 5);
double* m; cout << vl = v2 << endl; // allowed?
public: return 0;
// ... }
bool operator—(const MyVector& v) const;
};

« Why can the program run?

 In fact, we may also compare MyVector2D with MyVector, MyVector2D with
MyVector2D, NNVector With MyVector, NNVector with MyVector2D, etc.

Programming Design — Polymorphism 33/34 Ling-Chieh Kung (NTU IM)

Motivations Basic ideas and the first example Virtual functions

Summary

« Polymorphism is a technique to make our program clearer, more flexible and
more powerful.

— |t is based on inheritance.

— It is tightly related to function overriding, late binding, and virtual
functions.

* The key action 1s to “use a parent pointer to point to a child object™.
« To implement late binding, you need to

— Declare and override virtual functions.

— Do late binding by using parent pointers to point to child objects.

Programming Design — Polymorphism 34/34 Ling-Chieh Kung (NTU IM)

