Programming Design, Spring 2016
Homework 9

Instructor: Ling-Chieh Kung
Department of Information Management
National Taiwan University

Please upload one PDF file for Problem 1 and two CPP files for Problems 2 and 3 to PDOGS at
http://pdogs.ntu.im/judge/. Each student must submit her/his individual work. No hard copy. No
late submission. The due time of this homework is 2:00 am, April 27, 2016 (NOT April 25). Please
answer in either English or Chinese.

Before you start, please read Sections 7.10 and 22.9-22.13 of the textbook.!
The TA who generates the testing data and grades this homework is Chien Huang.

Problem 1

(20 points; 5 points each) Please answer the following questions:

(a) Recall that we may count the number of spaces in a given sentence:

char a[100] = {0};
while(cin.getline(a, 100))
{

int i = 0;

int spaceCount = 0;

while(al[i] !'= ’\0’)
{
if(ali]l == ")
spaceCount ++;
i++;
}

cout << spaceCount << "\n";

}

Modify this program to print out the number of sequences of consecutive spaces in a given sentence.
For example, “this is a book” contains 8 spaces but only 3 sequences of consecutive spaces.

(b) Given a string which contains fewer than 100 characters, I would like to replace all the “ntu”
to “NTU”. For example, “I like ntu, and I like ntuim.” should become “I like NTU, and I like
NTUim.” I wrote the following program:

char a[100] = {0};
cin >> a;

char* p = strstr(a, "ntu");
while(p !'= nullptr)
{

strcpy(p, "NTU");
p = strstr(p, "ntu");
}

cout << a << "\n'";

However, it does not work. Please help me modify this program so that after the loop, a contains
the desired string.

1The textbook is C++ How to Program: Late Objects Version by Deitel and Deitel, seventh edition.

(¢) Consider the following program

#include <iostream>
#include <cstring>
using namespace std;

const int CNT
const int LEN

4;
10;

int main ()

{
sortName (name, CNT);

cout << namel[i] << "
return O;

void sortName (char name [][LEN],

char name[CNT][LEN] = {"John",

for(int i = 0; i < CNT;

i++)

" .
’

const int CNT);

"Mikasa",

"Armin"};

and the definition of sortName:

{
{

{
if (strcmp (name[j],
{
char temp[LEN] =

void sortName (char name [] [LEN],

for(int i = 0; i < CNT;

i++)

for(int j = 0; j < CNT - i - 1; j++)

name[j + 1]1) > 0)

{0};

strcpy (temp, namel[j]);

const int CNT)

strcpy(name[j], name[j + 11);
strcpy(name[j + 1], temp);

Count the exact number of times that strcpy is invoked.

(d) Continue from Part (c). Consider another implementation of sortName:

void sortName (char* name[], const int CNT)
{
for(int i = 0; i < CNT; i++)
{
for(int j = 0; j < CNT - i - 1; j++)
{
if (strcmp (name[j], namel[j + 11) > 0)
{
char* temp = namel[j];
name [j] = namel[j + 1];
name [j + 1] = temp;

}

To invoke this implementation, we need to create a pointer array pointing to the names:

char name [CNT][LEN] = {"John", "Mikasa", "Eren", "Armin"};
char* ptr[CNT] = {0};
for(int i = 0; i < CNT; i++)

ptr[i] = name[i];

sortName (ptr, CNT);

for(int i = 0; i < CNT; i++)
cout << ptr[i] << " ";

Explain how the pointer swapping works. Is this implementation more time-efficient than that in
Part (c¢)? Explain.

Problem 2

(40 points) A restaurant is open seven days a week. The numbers of waiters/waitresses needed each
day are different. To facilitate our discussion, let’s call waiters/waitresses agents. There are two types
of agents: full-time and part-time. Each full-time agent works for five consecutive days and then have
two days off. Each part-time agent works for one day in a week.? A full-time agent is paid F dollars
per week, and a part-time agent is paid P dollars per day. While part-time agents are more flexible to
schedule, they are more expensive, i.e., F' < 5P. Given the number of agents needed for each day, the
question is to determine a hiring and scheduling plan for full-time and part-time agent to minimize the
total cost while satisfying all demands.

As an example,? suppose the demands are given in Table 1, where day 1 means Monday, day 2 means
Tuesday, ..., and day 7 means Sunday. One feasible schedule is the following: 18 agents start to work
on day 1, 6 on day 3, 3 on day 5, and 7 on day 6. Let x; be the number of full-time agents starting to
work on day 4, i = 1,...,7, this schedule can be expressed as x = (18,0,6,0,3,7,0). In total 34 agents
are required. As we may see, all the demands are satisfied, though on some days there are some excess
supply. Suppose the weekly wage for a full-time agent is $10000, the total cost of this plan is $340000.

Day |1 2 3 4 5 6 7
Demand | 18 12 24 19 27 16 14

Table 1: An example demand distribution

Suppose that we may also hire part-time agents at a daily wage $3000. Let y; be the number of
part-time agents working on day 4, i = 1,...,7, and y = (y1,¥2, ..., y7) be a schedule of part-time agents,
then y = (0,0,0,0,0,2,0) means hiring two part-time agents on day 6. This allows us to modify the plan
for full-time agents to x = (18,0,6,0,3,5,0), and the total cost becomes $320000 + $6000 = $326000.
In fact, if we hire seven and five part-time agents on days 6 and 7 and set y = (0,0,0,0,0,7,5), we will
only need 27 full-time agents with = = (18,0,6,0,3,0,0). The total cost becomes $270000 + $36000 =
$306000.

While a polynomial-time algorithm exists for finding an optimal schedule, in this problem you are
only required to implement a given algorithm, which is based on the algorithm given to you in Problem
3 of Homework 8. Recall that in that algorithm, we try to start our planning from each of the seven
days in a week. The seven different starting days give us seven candidate solutions, and we still do
that now. For each starting day, we run the algorithm given in Problem 2 of Homework 8. However,
when we want to schedule any full-time agent to start working on a day, we check whether this is the

21t does not really matter whether it is one part-time agent working for two days or two part-time agent each working
for one day. Therefore, let’s say each part-time agent works for one day.
3This example is the same as the one in Problem 2 of Homework 8.

last iteration, i.e., whether we will satisfy all demands after this iteration. If no, we schedule full-time
agents according to the algorithm given in Problem 2 of Homework 8; otherwise, we find an optimal way
to fulfill the unsatisfied demands with both full-time and part-time agents. Note that if an iteration is
the last iteration, there are at most five days having unsatisfied demands, and these five days must be
consecutive. This makes finding an optimal way easy.

As an example, consider DY = (18,12,24,19,27,16,14) as the initial demand distribution in Table
1. Let’s start on day 1. We will first set z; = DY = 18, as day 1 is currently the first day that still
needs officers. We then update DY to D' = (0,0,6,1,9,16,14) to represent the unfulfilled demands.
This requires us to set z3 = D3 = 6. We then have D? = (0,0,0,0,3,10,8). By setting z5 = 3, we
have D? = (0,0,0,0,0,7,5). Up to now, we followed the algorithm given in Problem 2 of Homework
8. However, when we see that setting 2 = 7 (following that algorithm) will terminate the planning,
we now we reach the last iteration. Now instead of setting x¢ = 7, we should find a best way to fulfill
the unsatisfied demands. It turns out that y = (0,0,0,0,0,7,5) is the best, and we do not need any
more full-time agents. This results in = (18,0,6,0,3,0,0) and y = (0,0,0,0,0,7,5) as a candidate
solution (if the planning starts on day 1). We should continue to start our planning on the other six
days, generate the other six candidate solutions, compare them, and find a best one. Note that part-time
agents should be considered only in the last iteration. Also note that “a best way” of fulfilling unsatisfied
demands in the last iterations depends on the relationship between F' and P. For example, if F' = 10000
but P = 8000, then y = (0,0,0,0,0,7,5) is no longer a part of an optimal schedule.

Input/output formats

There are 15 input files. In each file, there are nine integers D1, Ds, ..., D7, F', and P. Two consecutive
integers are separated by a white space. It is known that 0 < D; < 10000, 0 < F < 1000000, 0 < P <
1000000, and F' < 5P. Given this input, your program should run the given algorithm to find a feasible
schedule (z,y). The schedule should be printed out as 14 integers in two lines, x1, %3, ..., and 27 in the
first line and y1, y2, ..., and y7 in the second line. Each two consecutive integers in one line should be
separated by a white space. If there are multiple best ways in the last iteration, pick the one with the
smallest number of full-time agents. Finally, if there are multiple optimal candidate solutions, pick the
one whose starting day has the smallest index.

For example, for the input

18 12 24 19 27 16 14 10000 3000

the output should be

18 0 6 0 3 00
00O0O0OO0T7©5

What should be in your source file

Your .cpp source file should contain C++ codes that will both read testing data and complete the above
task. For this problem, you are allowed to use only techniques covered so far. NO other techniques are
allowed. Finally, you should write relevant comments for your codes.

Grading criteria

e 30 points will be based on the correctness of your output. PDOGS will compile your program, feed
testing data into your program, and check the correctness of your outputs. Each fully correct set
of outputs gives you 2 points.

e 10 points will be based on how you write your program, including the logic and format. Please try
to write a robust, efficient, and easy-to-read program.

Problem 3

(40 points) Given a paragraph, we may want to count the number of occurrences of some particular
words. For example, if one types “attach”, “attached”, and/or “attachment” in an e-mail and then click
on “send”, the e-mail software should check whether there is an attached file.

In this problem, you will be given a paragraph with multiple words separated by white spaces and
punctuation marks. You will also be given a list of keywords to be searched within the given paragraph.
To make the task easier, we only look for perfect matches, i.e., a keyword is considered existing in the
paragraph if there is a word in the paragraph matching the keyword exactly. For example, “key” and
“keyword” do not make a perfect match. Of course, punctuation marks are not considered as part of a
word. For example, “game-theoretic” is considered two words, “game” and “theoretic”. Following this
rule, “ntu” and “www.ntu.edu.tw” make a perfect match between the two “ntu”s. Finally, the matching
is case-insensitive. Therefore, “NTU” and “ntu” are considered as the same words and thus give a perfect
match.

Hint. This homework is easy if you appropriately use tolower, strlen, strcmp, and strtok. The
example program on p. 52 of the slides about strtok is extremely useful.

Input/output formats

There are 15 input files. In each file, there are two lines of characters. These characters include English
letters (capital and lowercase), commas, periods, exclamation marks, question marks, hyphens, white
spaces, and newline characters. Newline characters only exist at the end of lines. The first line contains
the paragraph for you to search for keywords in. Two words are separated by a white space or a
punctuation mark. The second line contains several keywords, separated by white spaces. In the first line,
there are at most 10000 characters and 1000 words. In the second line, there are at most 100 characters
and 10 keywords. Each word or keyword contains at most 50 characters. There is no punctuation mark
in the second line.

Given the input, your program should list the numbers of occurrences of these keywords in the order
as they appear in the input. For example, for the input

This is an apple. Is that a book? I am writing a time-efficient algorithm.
a is time

the output should be

2 21

What should be in your source file

Your .cpp source file should contain C++ codes that will both read testing data and complete the above
task. For this problem, you are allowed to use only techniques covered so far. NO other techniques are
allowed. Finally, you should write relevant comments for your codes.

Grading criteria

e 30 points will be based on the correctness of your output. PDOGS will compile your program, feed
testing data into your program, and check the correctness of your outputs. Each fully correct set
of outputs gives you 2 points.

e 10 points will be based on how you write your program, including the logic and format. Please try
to write a robust, efficient, and easy-to-read program.

