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Introduction

Two hours

• What will come to your mind when thinking of job allocation

• Consider a job of making toy cars

buyer
worker
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• Factory owner may wonder how to assign jobs

Introduction

order 100 toy cars Factory A

Factory B

Factory C

?

?

?

Everybody wants to earn more money!!!

Company ownerbuyer

time (workload)?

money (benefit)?
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Introduction

• More precisely, there may be different workloads and 

benefits of completing each job

• Also, a factory has limited capacity

• Another example: “The Big Issue Taiwan” hires the 

homeless to sell magazines. 

2 hours 2.5 hours 4.5 hours
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Introduction

• Jobs are valuable resources.

• We try to assign jobs to “machines.”
• Not just consider the overall profitability but also fairness among 

machines.

• Machines have limited capacity (it will prefer to be assigned more jobs as 

long as it has enough capacity).

• All jobs cannot be spilt to be assigned.

• The objective function in our problem is set to maximize 

the minimum benefit generated by a machine.

• And check whether that sacrifice efficiency too much. 
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Model - Setting and Assumptions 

• I: the set of machines

• J: the set of jobs

• n: the number of jobs (in set J)

• m: the number of machines (in set I)

• 𝐾: the capacity of machine i (𝐾 > 0)

• 𝑐𝑗: the finite workload of job j (𝑐𝑗 > 0)

• 𝑏𝑗: the finite benefit of job j (𝑏𝑗 > 0)
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Model - Setting and Assumptions 

• The fairness problem

capacity constraint

a job can only be done once

all jobs cannot be split (integrality)

maximize the minimum total 

benefit among the machines
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Model - Setting and Assumptions 

• Beside of the fairness, it is still important to ask what 

degree efficiency is sacrificed when we optimize fairness.

• Thus, we change the objective function to become a 

efficiency problem.

max ෍

𝑖∈𝐼

෍

𝑗∈𝐽

𝑏𝑗𝑥𝑖𝑗
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Model – NP-hardness

• Theorem 1. The job allocation problem in (3.1) is NP-hard.

• Consider a special case with only two uncapacitated (i.e., 𝐾 ≥
σ𝑗∈𝐽 𝑐𝑗) machines.

• The Partition problem reduces to this special case.

• Partition problem is NP-hard.
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Model – NP-hardness

• Theorem 2. The job allocation problem in (3.1) with 𝑚 = 1 is 

NP-hard.

• Our problem with one capacitated agent is exactly a knapsack 

problem.
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A heuristic algorithm

• We do not want to find an optimal solution. 

• We will design a heuristic algorithm that:

• Can find a near-optimal feasible solution. 

• Is fast.

• A heuristic algorithm is really applicable for large-scale 

problems in practice. 

• What heuristic algorithm will you design? 
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Literature Review

• Graham (1966, 1969)

• Minimum makespan problem for multiple identical machines

• Deuermeyer (1982)

• Maximize the shortest completion time.
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Literature Review

• Suppose there are four jobs and two machines 

2
4

5
7

5

4

7

2
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The CHBF algorithm

• We propose the algorithm based on LPT (longest time 

first) rule (denoted as capacitated highest-benefit job first, 

CHBF).

1. Sort all jobs in descending order according to their benefit.

2. Assign a job to the machine that currently has lowest cumulative 

benefit and enough capacity. (If a job cannot be assigned, try 

the machine with the next lowest cumulative benefit.)

3. Repeat step 2 until the last job has been tried to be assigned.

• The time complexity can be easily analyzed. 
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The CHBF algorithm

• Suppose there are four jobs and two machines

8 8

6 - 6

3 - 3
2 - 2

9 - 5 benefits: 12

workloads: 8

benefits: 8

workloads: 8
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Research objectives

• Designing an algorithm is easy. Showing that it is “good” 

is hard. 

• What is “good?”

• Average-case performance. 

• Worst-case performance. 

• What do we mean by “worst-case performance?”
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Research objectives

• We hope our heuristic algorithm can have a worst-case 

performance guarantee. 

• For a given instance, our algorithm finds a solution. 

• We do not know how good it is compared to an optimal solution. 

• We want to show that “it may be bad, but it will not be too bad.” 

• We want to show this while we have no idea where an optimal 

solution is! 

• If we can show it, we have an approximation algorithm. 
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Literature Review

• Graham (1966, 1969)

• Minimum makespan problem for multiple identical machines

• Develop a factor-
4

3
approximation algorithm (longest processing 

time first algorithm).

• Deuermeyer (1982)

• Maximize the shortest completion time.

• The same algorithm is a factor-
3

4
approximation algorithm.

• Csirik et al. (1992) 

• Go further from Deuermeyer et al. (1982) and use the same 

method to show that the performance guarantee can be improved 

to 
3𝑚−1

4𝑚−2
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Analysis – CHBF algorithm

• We show the that CHBF has three different worst-case 

performance guarantees for three different scenarios of 

benefit-workload relationship 𝒃𝒋 = 𝒉𝒄𝒋
𝒕 for some ℎ > 0.

• Linear: 𝑡 = 1

• Convex: 𝑡 > 1

• Concave: 𝑡 < 1

• We denote 𝒛∗ as the objective value of an optimal solution 

and 𝒛′ as that of the CHBF solution.
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Analysis – CHBF algorithm (linear)

• Theorem 3. If 𝑏𝑗 = ℎ𝑐𝑗 for all 𝑗 ∈ 𝐽 for some ℎ > 0, we 

have 𝑧′ ≥
1

2
𝑧∗.

• The largest value of 𝑧∗ is ℎ𝐾. 

• We assume that 𝑐𝑗 ≤ 𝐾 for all 𝑗 ∈ 𝐽.

• We only need to prove the case if there is any job failing to be 

assigned due to limited capacity (otherwise, it has been proved to 

have a performance guarantee 
3

4
in Deuermeyer et al. (1982))
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Analysis – CHBF algorithm (linear)

• Obviously, 𝑧∗ ≤ ℎ𝐾 (why?).

• We use contradiction to prove that 

𝑧′ ≥
1

2
ℎ𝐾.

• Suppose that there is a counterexample in which 

𝑧′ <
1

2
ℎ𝐾.

• Let job 𝑙 is the first job not assigned during the CHBF process.

• Let machine 𝑖 be the one having the lowest cumulative benefit 

when CHBF tries (but fails) to assign job 𝑙.
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Analysis – CHBF algorithm (linear)
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Analysis – CHBF algorithm (linear)

1. There must be at least one job assigned to machine 𝑖.

2. 𝑧𝑖 <
1

2
ℎ𝐾, because 𝑧′ <

1

2
ℎ𝐾.

3. For job 𝑙, CHBF implies 𝑏𝑙 <
1

2
ℎ𝐾, so we know 𝑐𝑙 <

1

2
𝐾.

4. But because 𝑧𝑖 <
1

2
ℎ𝐾, the cumulated benefit on 

machine 𝑙 is also less than 
1

2
𝐾. If 𝑐𝑙 ≤

1

2
𝐾, job 𝑙 can 

actually be assigned to machine 𝑖. Contradiction! 

5. We obtain 𝑧′ ≥
1

2
ℎ𝐾 ≥

1

2
𝑧∗.
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Analysis – CHBF algorithm (linear)

• Theorem 4. The performance guarantee 
1

2
of CHBF in 

Theorem 3 is tight. 

• Let ℎ = 1 and ϵ be a small positive number.

𝐾 𝐾 𝐾 𝐾
……

𝑚

𝑧′

𝑧∗
=

1
2𝐾 + ϵ

𝐾
≅
1

2

2𝑚

1

2
𝐾

1

2
𝐾

1

2
𝐾

1

2
𝐾……

1

2
𝐾 + 𝜖

𝑛 = 2𝑚 + 11

2
𝐾
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Analysis – CHBF algorithm (convex)
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Analysis – CHBF algorithm (convex)

• Let 𝑐𝑚 = 𝛽𝐾 for some 𝛽 ∈ (0,1].

• Lemma 1. If 𝑏𝑗 = ℎ𝑐𝑗
𝑡 for all 𝑗 ∈ 𝐽 for some given ℎ > 0 and 

𝑡 > 1, we have

ℎ𝐾𝑡𝛽𝑡−1 ≥ 𝑧∗,

where 𝛽 =
𝑐𝑚

𝐾
.

• In each machine contains exactly one job of workload 𝑐𝑗 =
𝐾, we will have ℎ𝐾𝑡 as the objective value.

• To further improve this bound:

• We could only assign 
1

𝛽
jobs to the machines.

• The cumulative benefit is thus no greater than 
1

𝛽
ℎ(𝛽𝐾)𝑡<

1

𝛽
ℎ(𝛽𝐾)𝑡= ℎ𝐾𝑡𝛽𝑡−1.
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Analysis – CHBF algorithm (convex)

• Lemma 2. If 𝑏𝑗 = ℎ𝑐𝑗
𝑡 for all 𝑗 ∈ 𝐽 for some given ℎ > 0 and 

𝑡 > 1, we have

𝑧′ ≥ min
1

2𝑡
,

𝑛−𝑚

(𝑛−𝑚+1)𝑡
ℎ𝐾𝑡.

• We prove this result by considering the moment of our first failure. 

• The failure happens when we cannot assign job 𝑗 to the least 

cumulative machine 𝑖 at that moment. 

• Let 𝑝 be the number of jobs that have been assigned to machine 𝑖 at 

that moment.

29
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1
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𝐾

1
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𝐾
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Analysis – CHBF algorithm (convex)

• Let α = min
1

2𝑡
,

𝑛−𝑚

(𝑛−𝑚+1)𝑡
be the bound to be proved.

• We prove by contradiction by assuming that that 𝑧′ <
𝛼ℎ𝐾𝑡.

• 𝑧𝑖 < 𝛼ℎ𝐾𝑡

𝑏𝑗 ≤
𝛼ℎ𝐾𝑡

𝑝
(CHBF algorithm)

𝑐𝑗 ≤
𝑡 𝛼

𝑝
𝐾 (𝑏𝑗 = ℎ𝑐𝑗

𝑡)

𝐾𝑖 ≥ 𝐾 −
𝑡 𝛼

𝑝
𝐾

the cumulative benefit: 𝑝ℎ
𝐾−

𝑡 𝛼

𝑝
𝐾

𝑝

𝑡

≥ 𝛼ℎ𝐾𝑡 if and only if 𝛼 ≤
𝑝

(𝑝+1)𝑡
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Analysis – CHBF algorithm (convex)

• We would like to obtain an a priori, not an a posteriori 

bound.

• The smallest and largest possible numbers of jobs on 

machine 𝑖 is 1 and 𝑛 −𝑚.

• 1 ≤ 𝑝 ≤ 𝑛 −𝑚

• α = min
1

2𝑡
,

𝑛−𝑚

(𝑛−𝑚+1)𝑡

𝐾 𝐾 𝐾 𝐾
……

𝑚

𝐾

1 job

1

3
𝐾
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Analysis – CHBF algorithm (convex)

1

𝑝

𝑛 − 𝑚

𝑝

(𝑝 + 1)𝑡
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Analysis – CHBF algorithm (convex)

• Let 𝑎 =
𝑝

(𝑝+1)𝑡

•
𝑑𝑎

𝑑𝑝
=

1

𝑝+1 𝑡+1 [1 − 𝑡 − 1 𝑝]

• If 𝑡 ≥ 2, 
𝑝

(𝑝+1)𝑡
is decreasing as 𝑝 ≥ 1

• If 𝑡 < 2, 
𝑝

(𝑝+1)𝑡
is increasing when 𝑝 = 1

• When 𝑡 approaches 1, eventually 
1

2𝑡
will be the smaller 

one (as long as 𝑛 −𝑚 > 1) , and this bound converges to 
1

2
as Theorem 3 suggests for the linear benefit-workload 

relationship (where 𝑡 = 1).
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Analysis – CHBF algorithm (convex)

• Lemma 3. If 𝑏𝑗 = ℎ𝑐𝑗
𝑡 for all 𝑗 ∈ 𝐽 for some given ℎ > 0 and 

𝑡 > 1, we have

𝑧′ ≥ ℎ𝛽𝑡𝐾𝑡,

where 𝛽 =
𝑐𝑚

𝐾
.

• According to CHBF rule, we assign the first 𝑚th jobs one 

at a time to the 𝑚 machines. After that, each machines' 

benefit will be at least ℎ(𝛽𝐾)𝑡, which implies that 𝑧′ ≥
ℎ𝛽𝑡𝐾𝑡.
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Analysis – CHBF algorithm (convex)

• From Lemma 1, we know ℎ𝐾𝑡 ≥
𝑧∗

𝛽𝑡−1
.

• From Lemma 2, we know 𝑧′ ≥ min
1

2𝑡
,

𝑛−𝑚

(𝑛−𝑚+1)𝑡
ℎ𝐾𝑡.

• From Lemma 3, we know 𝑧′ ≥ ℎ𝛽𝑡𝐾𝑡.

• Theorem 5. If 𝑏𝑗 = ℎ𝑐𝑗
𝑡 for all 𝑗 ∈ 𝐽 for some given ℎ > 0 and 𝑡 > 1, we 

have

𝑧′ ≥
max min

1

2𝑡
,

𝑛−𝑚

(𝑛−𝑚+1)𝑡
,𝛽𝑡

𝛽𝑡−1
𝑧∗.

• When 𝛽 is large, 𝛽𝑡 would dominate min
1

2𝑡
,

𝑛−𝑚

(𝑛−𝑚+1)𝑡
.

• Note that it is possible for the worst-case performance guarantee to 
be above 

1

2
.

max min
1

2𝑡
,

𝑛 −𝑚

(𝑛 − 𝑚 + 1)𝑡
, 𝛽𝑡 ℎ𝐾𝑡
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Analysis – CHBF algorithm (concave)

• Let 𝑐𝑚 = 𝛽𝐾 for some 𝛽 ∈ (0,1].

• Theorem 6. If 𝑏𝑗 = ℎ𝑐𝑗
𝑡 for all 𝑗 ∈ 𝐽 for some given ℎ > 0

and 𝑡 < 1, we have

𝑧′ ≥
𝐾𝑡−1

2𝑡
𝑧∗,

where 𝛽 =
𝑐𝑚

𝐾
.

• We prove by the similar way we did in convex version.

• Notice that the most beneficial way to consume all the 
capacity of one machine is to use 𝐾 jobs with unit 
workload. 
• In each machine contains exactly 𝐾 jobs of workload 1, we will 

have ℎ𝐾 as the objective value.

36



Analysis – CHBF algorithm (concave)

• Let 𝛼 =
𝐾𝑡−1

2𝑡
be the bound to be proved.

• Note that 𝑡 < 1

• We prove by contradiction by assuming that that 𝑧′ < 𝛼ℎ𝐾
• 𝑧𝑖 < 𝛼ℎ𝐾

𝑏𝑗 ≤ 𝛼ℎ𝐾 (CHBF algorithm)

𝑐𝑗 ≤ (𝛼𝐾)
1

𝑡 (𝑏𝑗 = ℎ𝑐𝑗
𝑡)

𝐾𝑖 ≥ 𝐾 − (𝛼𝐾)
1

𝑡

the cumulative benefit: ℎ(𝐾 − 𝛼𝐾
1

𝑡)𝑡

 If it is at least equal to 𝛼ℎ𝐾, then 𝛼 ≤
𝐾𝑡−1

2𝑡

Then we obtain 𝑧′ ≥
𝐾𝑡−1

2𝑡
ℎ𝐾 ≥

𝐾𝑡−1

2𝑡
𝑧∗
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Analysis – the modified CHBF algorithm

1. We then use a linear programming solver to obtain an 

optimal solution to the relaxed program. 

2. We assign job 𝑗 to machine 𝑖 if the result shows that job 

𝑗 is assigned to machine 𝑖 (𝑥𝑖𝑗 = 1) completely.

3. We then schedule the left jobs by the CHBF algorithm.

Solve the linear 

program.

If 𝑥𝑖𝑗 = 1, assign 

job 𝑗 to machine 𝑖 .

Solve the left jobs 

by the CHBF 

algorithm.
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Numerical study

• To understand how CHBF and MCHBF perform in the 

problem, we consider the following factors for 𝑐𝑗~𝑈(0,50) :

• The relationship of job benefits and workloads (𝑏𝑗 = 𝑐𝑗
𝑡)

1. linear: 𝑡 = 1 - scenario L

2. convex: 𝑡 = 2 - scenario X

3. concave: 𝑡 =
1

2
- scenario A

4. unrelated: 𝑏𝑗~𝑈(0,50) - scenario R

• Machine capacity

1. unlimitation: 𝐾 = ∞ - scenario N

2. loose capacity: 𝐾 =
σ𝑗∈𝐽 𝑐𝑗

𝑚
- scenario L

3. tight capacity: 𝐾 =
3

4

σ𝑗∈𝐽 𝑐𝑗

𝑚
- scenario T
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Numerical study

• For each of the twelve combinations of scenarios, we 
generated 100 experiments with several combination of 𝑚
and 𝑛.

• For 𝑚 = 5, 𝑛 = 20, we use branch-and-bound algorithm 
IP solution. 

• Due to memory limitation, we find a LP solution instead in 
other case.

𝑚 𝑛

5 20

5 50

5 500

15 50

15 500

50 500

capacity

N

L

T

benefit-

workload

R

L

X

A
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Numerical study

• We denote solution of 

• “fairness” version as 𝑤𝐼𝑃, 𝑤𝐿𝑃, 𝑤𝐶𝐻𝐵𝐹, 𝑤𝑀𝐶𝐻𝐵𝐹

• “efficiency” version as 𝑧𝐼𝑃, 𝑧𝐿𝑃, 𝑧𝐶𝐻𝐵𝐹, 𝑧𝑀𝐶𝐻𝐵𝐹
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Numerical study

• CHBF and MCHBF perform better if the capacity is looser

capacity
𝒛(𝒙𝑪𝑯𝑩𝑭)

𝒛𝑰𝑷
𝒛(𝒙𝑴𝑪𝑯𝑩𝑭)

𝒛𝑰𝑷
𝒘𝑪𝑯𝑩𝑭

𝒘𝑰𝑷

𝒘𝑴𝑪𝑯𝑩𝑭

𝒘𝑰𝑷

N 1 1 0.988 0.971

L 0.987 0.978 0.964 0.937

T 0.946 0.973 0.912 0.931

Table 5.1: Numerical results of number of capacity tightness
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Numerical study

• Both algorithms perform better when 
𝑛

𝑚
becomes bigger.

• CHBF performs better than MCHBF when 
𝑛

𝑚
is less while 

it is better to applied MCHBF when 
𝑛

𝑚
is large.

𝒏

𝒎
𝒛(𝒙𝑪𝑯𝑩𝑭)

𝒛𝑰𝑷
𝒛(𝒙𝑴𝑪𝑯𝑩𝑭)

𝒛𝑰𝑷
𝒘𝑪𝑯𝑩𝑭

𝒘𝑰𝑷

𝒘𝑴𝑪𝑯𝑩𝑭

𝒘𝑰𝑷

100 0.983 0.999 0.980 0.997

33.333 0.983 0.998 0.977 0.989

10 0.981 0.991 0.965 0.962

4 0.971 0.964 0.942 0.907

3.333 0.961 0.960 0.899 0.863

Table 5.2: Numerical results of number of machines and jobs

44

>

<

>

<



Numerical study

• For “efficiency” version, all ratios are larger than 0.98 except for using CHBF 

when benefits are concave in workloads 

-> both algorithms would not sacrifice too much efficiency 

• For “fairness” version, 

• CHBF and MCHBF all perform the best when benefits are linear in workloads.

• CHBF performs well when benefits are convex in workloads while performing the worst 

when benefits are concave in workloads.

• MCHBF performs more or less the same except when benefits are linear in workloads.

benefit-

workload

𝒛(𝒙𝑪𝑯𝑩𝑭)

𝒛𝑰𝑷
𝒛(𝒙𝑴𝑪𝑯𝑩𝑭)

𝒛𝑰𝑷
𝒘𝑪𝑯𝑩𝑭

𝒘𝑰𝑷

𝒘𝑴𝑪𝑯𝑩𝑭

𝒘𝑰𝑷

R 0.992 0.988 0.947 0.936

L 0.990 0.988 0.979 0.971

X 0.988 0.980 0.976 0.934

A 0.936 0.979 0.918 0.945

Table 5.3: Numerical results of the benefit-workload relationship
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Numerical study - summary

• The average performance of all instances is above 0.8.

• CHBF performs well when job benefits are convex or 

linear in workloads.

• MCHBF performs better than CHBF when job benefit are 

concave in workloads.

• The convexity or concavity of the benefit-workload 

relationship has an important managerial implication.

• convex -> production environment is of significant economy of 

scale

• concave -> the product is of diminishing marginal benefit for 

consumers
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Conclusions

• We consider a job allocation problem with fairness.

• We modify a classic algorithm to develop our own algorithm for our 
problem.

• We prove the performance guarantees of our algorithm when the 
relationship between benefits and workloads is linear, convex, and 
concave.

• A numerical study is conducted. 

• The CHBF algorithm is more appropriate when production environment 
exhibits significant economy of scale.

• The MCHBF algorithm is more appropriate when the product is of 
diminishing marginal benefit for consumers.

• Further investigation

• Prove worst-case performance guarantee of our algorithm under 
general problem or under some conditions.

• Modify our algorithm by the ideas coming up with when we prove the 
bounds.
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