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Introduction

- What will come to your mind when thinking of job allocation
- Consider a job of making toy cars

& Two hours

worker



Introduction

- Factory owner may wonder how to assign jobs

time (workload)?
money (benefit)?

£ *
F

?

order 100 toy cars

Company owner

Everybody wants to earn more money!!!

Factory C



Introduction

- More precisely, there may be different workloads and
benefits of completing each job

7
¢ 2 hours

/25 hOUI‘S /45 hours

- Also, a factory has limited capacity

- Another example: “The Big Issue Taiwan” hires the
homeless to sell magazines.



Introduction

- Jobs are valuable resources.

- We try to assign jobs to “machines.”

+ Not just consider the overall profitability but also fairness among
machines.

- Machines have limited capacity (it will prefer to be assigned more jobs as
long as it has enough capacity).

- All jobs cannot be spilt to be assigned.
- The objective function in our problem is set to maximize
the minimum benefit generated by a machine.
- And check whether that sacrifice efficiency too much.
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Model - Setting and Assumptions

- I: the set of machines

- J: the set of jobs

- n: the number of jobs (in set J)

- m: the number of machines (in set I)
- K: the capacity of machine i (K > 0)
- ¢;: the finite workload of job | (¢; > 0)
» b;: the finite benefit of job j (b; > 0)

el jed

1 if job j is assigned to machine i
Tij =
0 otherwise



Model - Setting and Assumptions

- The fairness problem

max  min b maximize the minimum total
icl {; J ”} benefit among the machines
j
S.t. ch::«:ij <K Viel capacity constraint
jeJd
(3.1)
Z ri; <1 Vyeld a job can only be done once
il

ri; €{0,1} Viel,je€ J. alljobscannot be split (integrality)



Model - Setting and Assumptions

- Beside of the fairness, it is still important to ask what
degree efficiency is sacrificed when we optimize fairness.

- Thus, we change the objective function to become a
efficiency problem.

max z z bjxi;

i€l jeJ



Model — NP-hardness

- Theorem 1. The job allocation problem in (3.1) is NP-hard.
- Consider a special case with only two uncapacitated (i.e., K >

2.jej €j) machines.

- The Partition problem reduces to this special case.

- Partition problem is NP-hard.
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]

Figure 30.1 An example of the partition problem




Model — NP-hardness

- Theorem 2. The job allocation problem in (3.1) withm =1 is
NP-hard.

- Our problem with one capacitated agent is exactly a knapsack
problem.




A heuristic algorithm

- We do not want to find an optimal solution.

- We will design a heuristic algorithm that:
- Can find a near-optimal feasible solution.
- Is fast.

- A heuristic algorithm is really applicable for large-scale
problems in practice.

- What heuristic algorithm will you design?



Literature Review

. Graham (1966, 1969)

- Minimum makespan problem for multiple identical machines

- Deuermeyer (1982)
- Maximize the shortest completion time.



Literature Review

- Suppose there are four jobs and two machines




The CHBF algorithm

- We propose the algorithm based on LPT (longest time
first) rule (denoted as capacitated highest-benefit job first,
CHBF).

1. Sort all jobs in descending order according to their benefit.

2. Assign a job to the machine that currently has lowest cumulative
benefit and enough capacity. (If a job cannot be assigned, try
the machine with the next lowest cumulative benefit.)

3. Repeat step 2 until the last job has been tried to be assigned.
- The time complexity can be easily analyzed.



The CHBF algorithm

- Suppose there are four jobs and two machines
benefits: 12 benefits: 8
workloads: 8 workloads: 8

capacity: 8



Research objectives

- Designing an algorithm is easy. Showing that it is “good”
IS hard.
- What is “good?”
- Average-case performance.
- Worst-case performance.

- What do we mean by “worst-case performance?”



Research objectives

- We hope our heuristic algorithm can have a worst-case
performance guarantee.
- For a given instance, our algorithm finds a solution.
- We do not know how good it is compared to an optimal solution.
- We want to show that “it may be bad, but it will not be too bad.”
- We want to show this while we have no idea where an optimal
solution is!

- If we can show it, we have an approximation algorithm.



Literature Review

. Graham (1966, 1969)

- Minimum makespan problem for multiple identical machines

- Develop a factor-g approximation algorithm (longest processing
time first algorithm).

- Deuermeyer (1982)
- Maximize the shortest completion time.

- The same algorithm is a factor-% approximation algorithm.

- Csirik et al. (1992)

- Go further from Deuermeyer et al. (1982) and use the same

method to show that the performance guarantee can be improved
3m—1
o 4m-—2
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Analysis — CHBF algorithm

- We show the that CHBF has three different worst-case
performance guarantees for three different scenarios of
benefit-workload relationship b; = hc}“ for some h > 0.
- Linear. t =1
- Convex:t>1
- Concave:t <1

- We denote z* as the objective value of an optimal solution
and z' as that of the CHBF solution.



Analysis — CHBF algorithm (linear)

- Theorem 3. If b; = hc; for all j € ] for some h > 0, we

*

1
have z' > 52"

- The largest value of z* is hK.
- We assume that ¢; < K forall j € J.

- We only need to prove the case if there is any job failing to be
assigned due to limited capacity (otherwise, it has been proved to

have a performance guarantee z iIn Deuermeyer et al. (1982))



Analysis — CHBF algorithm (linear)

- Obviously, z* < hK (why?).
- We use contradiction to prove that
1
"> —-hK.
=3
- Suppose that there is a counterexample in which
1
z' < =hK.

2
- Let job [ is the first job not assigned during the CHBF process.

- Let machine i be the one having the lowest cumulative benefit
when CHBF tries (but fails) to assign job .



Analysis — CHBF algorithm (linear)



Analysis — CHBF algorithm (linear)

1. There must be at least one job assigned to machine i.

2. z; < %hK, because z' < %hK.
3. Forjob [, CHBF implies b; < %hK, so we know ¢; < %K.

4. But because z; < lhK the cumulated benefit on

machine [ is also Iess than = K If c; < K job [ can
actually be aSS|gned to machlne L. Contradlctlon'

5. We obtain z’ hK > = z



Analysis — CHBF algorithm (linear)

- Theorem 4. The performance guarantee % of CHBF In
Theorem 3 is tight.
- Let h = 1 and € be a small positive number.
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Analysis — CHBF algorithm (convex)

\

) = 2D
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Analysis — CHBF algorithm (convex)

- Let ¢,,, = K for some § € (0,1].
- Lemma 1. If b; = hc; for all j € ] for some given h > 0 and
t > 1, we have

hKtpt—1 > z*,
where g = %’"

- In each machine contains exactly one job of workload ¢; =
K, we will have hK® as the objective value.

- To further improve this bound:

- We could only assign E‘ jobs to the machines.

- The cumulative benefit is thus no greater than E‘ h(BK)i<
Sh(BK) = hK'B*1.



Analysis — CHBF algorithm (convex)

- Lemma 2. If b; = hc; for all j € ] for some given h > 0 and
t > 1, we have

. 1 n—-m
z' > min {—, }th.
2t (n—-m+1)t

- We prove this result by considering the moment of our first failure.

- The failure happens when we cannot assign job j to the least
cumulative machine i at that moment.

- Let p be the number of jobs that have been assigned to machine i at
that moment.

1
-K —K
3

machine i  job j
p job(s)




Analysis — CHBF algorithm (convex)

- Let a = min {% (n::nt} be the bound to be proved.
- We prove by contradiction by assuming that that z’ <
ahK?.
c Z; < ahK?
ahK?t

»b; < (CHBF algorithm)

>Cj < t\/%K (b] = hC]?)

>Kl-2K—"“\/§K

k-"%k
»the cumulative benefit: ph ( ;/; ) > ahK*t if and only if a < (pfl)t




Analysis — CHBF algorithm (convex)

- We would like to obtain an a priori, not an a posteriori
bound.

- The smallest and largest possible numbers of jobs on
machine i is 1 and n — m.

c1<p<n-m

-oc=min{l i } 1jjtb

2t (n—-m+1)t




Analysis — CHBF algorithm (convex)

p
(p+ 1)°




Analysis — CHBF algorithm (convex)

letg = D t=15 |
(p+1)*
da 1
ft>2, (pfl)t is decreasingas p > 1 EESSSE=emE
cft <2, (pfl)t is increasing when p = 1

- When t approaches 1, eventually % will be the smaller

one (as longasn—m > 1), and this bound converges to
% as Theorem 3 suggests for the linear benefit-workload
relationship (where t = 1).



Analysis — CHBF algorithm (convex)

- Lemma 3. If b; = hc; for all j € ] for some given h > 0 and
t > 1, we have

z' > hBtK?,
where g = %’"

- According to CHBF rule, we assign the first mth jobs one
at a time to the m machines. After that, each machines'

benefit will be at least h(BK)¢, which implies that z’ >
hBiKE.



Analysis — CHBF algorithm (convex)

zZ

- From Lemma 1, we know hKt >

.Bt_l '
- From Lemma 2, we know z’ > min {ll} hKt.
2t (n-m+1)t \
- From Lemma 3, we know z' > hptK¢,

inje, T tRK
max {min i m 1) B

- Theorem 5. If b; = hcf forallj € ] forsome givenh >0andt > 1, we
have

Inax{nﬂn{l- }Bt}
Un— ty
IS 2V(m-m+1) *

- Bt—l
n-m

- When g is large, gt would dominate min {%m}

- Note that i1t IS possible for the worst-case performance guarantee to
be above >




Analysis — CHBF algorithm (concave)

- Let ¢,,, = K for some § € (0,1].

- Theorem 6. If b; = hc/ for all j € J for some given h > 0
and t < 1, we have

Kt—l Z*
2t ’

z' >
where g = 2.

- We prove by the similar way we did in convex version.

- Notice that the most beneficial way to consume all the

capacity of one machine is to use K jobs with unit
workload.

- In each machine contains exactly K jobs of workload 1, we will
have hK as the objective value.



Analysis — CHBF algorithm (concave)

t—1

- Leta = Kzt be the bound to be proved.
- Note thatt < 1

- We prove by contradiction by assuming that that z’' < ahK
* Zj < ahK
»b; < ahK (CHBF algorithm)
¢ < (@K)t (b = hc!)
>Ki > K — (CXK)%

1
»the cumulative benefit: h(K — (aK)t)t

Kt—l
2t

~Ifitis at least equal to ahK, then a <

Kt—l Kt—l
x: hK > Y: z"

» Then we obtain z' >



Analysis — the modified CHBF algorithm

1. We then use a linear programming solver to obtain an
optimal solution to the relaxed program.

2. We assign job j to machine i if the result shows that job
j Is assigned to machine i (x;; = 1) completely.
3. We then schedule the left jobs by the CHBF algorithm.

Solve the left jobs
by the CHBF
algorithm.

Solve the linear If x;; = 1, assign

program. job j to machine i.
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Numerical study

- To understand how CHBF and MCHBF perform in the
problem, we consider the following factors for ¢;~U(0,50) :

- The relationship of job benefits and workloads (b; = cjt)

linear: t = 1 - scenario L
convex:; t = 2 - scenario X

1 .
concave: t = 5" scenario A

H W Dd e

unrelated: b;~U(0,50) - scenario R

- Machine capacity
1. unlimitation: K = o - scenario N

2. loose capacity: K = (%) - scenario L

3. tight capacity: K = - (—m ) -scenario T



Numerical study

- For each of the twelve combinations of scenarios, we
generated 100 experiments with several combination of m

and n.
workload N 5 20
R

L 5 50
L T 5 500
a 15 50
a 15 500
50 500

- Form = 5, n = 20, we use branch-and-bound algorithm
IP solution.

- Due to memory limitation, we find a LP solution instead in
other case.



Numerical study

- We denote solution of
- “fairness” version as w!P, wtf wCHBF ,MCHBF
- “efficiency” version as z'F, zLF, zCHBF zMCHBE



Numerical study

- CHBF and MCHBF perform better if the capacity is looser

CHBF) MCHBF) C'HBF MCHBF
capacity
wIP WIP

0.988 0.971
L 0.987 0.978 0.964 0.937
T 0.946 0.973 0.912 0.931

Table 5.1: Numerical results of number of capacity tightness



Numerical study

- Both algorithms perform better when % becomes bigger.

- CHBF performs better than MCHBF when % IS less while
it is better to applied MCHBF when % is large.

HBF M HBF HBF MCHBF
“-
wlP wlP

0.983 0.999 0.980 0.997

DSk 0.983 | < | 0.998 0.977 0.989
10 0.981 0.991 0.965 0.962

4 0.971 0.964 0.942 0.907
SaSkte 0.961 ) 0.960 0.899 0.863

Table 5.2: Numerical results of number of machines and jobs




Numerical study

- For “efficiency” version, all ratios are larger than 0.98 except for using CHBF
when benefits are concave in workloads

-> poth algorithms would not sacrifice too much efficiency
- For “fairness” version,

- CHBF and MCHBF all perform the best when benefits are linear in workloads.

- CHBF performs well when benefits are convex in workloads while performing the worst
when benefits are concave in workloads.

- MCHBF performs more or less the same except when benefits are linear in workloads.

benefit- CHBF) MCHBF) CHBF MCHBF
workload WP | TwlP

0.992 0.988 0.947 0.936
L 0.990 0.988 0.979 0.971
X 0.988 0.980 0.976 0.934
A 0.936 0.979 C0.918D 0.945

Table 5.3: Numerical results of the benefit-workload relationship



Numerical study - summary

- The average performance of all instances is above 0.8.

- CHBF performs well when job benefits are convex or
linear in workloads.

- MCHBF performs better than CHBF when job benefit are
concave in workloads.

- The convexity or concavity of the benefit-workload
relationship has an important managerial implication.

- convex -> production environment is of significant economy of
scale

- concave -> the product is of diminishing marginal benefit for
consumers
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Conclusions

- We consider a job allocation problem with fairness.

- We modify a classic algorithm to develop our own algorithm for our
problem.

- We prove the performance guarantees of our algorithm when the
relationship between benefits and workloads is linear, convex, and
concave.

- A numerical study is conducted.

- The CHBF algorithm is more appropriate when production environment
exhibits significant economy of scale.

- The MCHBF algorithm is more appropriate when the product is of
diminishing marginal benefit for consumers.

- Further investigation

- Prove worst-case performance guarantee of our algorithm under
general problem or under some conditions.

- Modify our algorithm by the ideas coming up with when we prove the
bounds.
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