Basic data types

Constants and casting

Single-dimensional arrays

Multi-dimensional arrays

Programming Design
Variables and Arrays
Ling-Chieh Kung

Department of Information Management
National Taiwan University

Programming Design — Variables and Arrays

1/62

Ling-Chieh Kung (NTU IM)



Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Variables and arrays

« Today we introduce arrays.
— A collection of variables of the same type.
— An array variable is of an array type, a nonbasic data type.
« There are many nonbasic data types:
— Arrays.
— Pointers.
— Self-defined data types (e.g., classes).
* Before we introduce arrays, let’s talk more about variables and basic data types.

Programming Design — Variables and Arrays 2162 Ling-Chieh Kung (NTU IM)



Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Outline

« Basic data types

« Constants and casting
 Single-dimensional arrays
« Multi-dimensional arrays

Programming Design — Variables and Arrays 3/62 Ling-Chieh Kung (NTU IM)



Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Data types, literals, and variables

« Recall that in C++, each variable must be have its data type.

— It tells the system how to allocate memory spaces and how to interpret
those Os and 1s stored there.

— It will also determine how operations are performed on the variable.
« Here we introduce basic (or built-in or primitive) data types.
— Those provided as part of the C++ standard.
— We will define our own data types later in this semester.
» Before we start, let’s distinguish literals from variables.
— Literals: items whose contents are fixed, e.g., 3, 8.5, and “Hello world”.
— Variables: items whose values may change.

Programming Design — Variables and Arrays 4/62 Ling-Chieh Kung (NTU IM)



Basic data types

Constants and casting

Single-dimensional arrays

Multi-dimensional arrays

Basic data types

* The ten C++ basic data types (bytes information comes from the instructor’s

compiler):
Category Type Bytes Type Bytes
bool 1 long 4
char 1 unsigned int 4
Integers _ _
int 4 unsigned short 2
short 2 unsigned long 4
Fractional numbers £float 4 double 8

« Basic type names are all keywords.
« Number of bytes are compiler-dependent.

Programming Design — Variables and Arrays

5/62

Ling-Chieh Kung (NTU IM)



Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

int

* int means an integer.
* In Dev-C++ 5.11 for Windows 10:
— An integer uses 4 bytes to store from —231 to 231 — 1.
— unsigned (4 bytes): from 0 to 232 — 1.
— short (2 bytes): from —32768 to 32767.
— long: the same as int.
« The C++ standard only requires a compiler to ensure that:
— The space for a long variable > the space for an int one.
— The space for an int variable > the space for a short one.
« short and long just create integers with different “lengths”.
— In most information systems this is not an issue.

Programming Design — Variables and Arrays 6/62 Ling-Chieh Kung (NTU IM)



Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Limits of int

« The limits of C++ basic data types are stored in <climits>.

#include <iostream>
#include <climits>
using namespace std;

int main|()
{
cout << INT MIN << " " << INT MAX << "\n";

return 0;
}

« For information, see, e.g., http://www.cplusplus.com/reference/climits/.

Programming Design — Variables and Arrays 7162 Ling-Chieh Kung (NTU IM)


http://www.cplusplus.com/reference/climits/

Basic data types

Constants and casting

Single-dimensional arrays

Multi-dimensional arrays

sizeof

« We may use the sizeof operator to know the size of a variable or a type.

cout <<
cout <<
cout <<

"int " << sizeof (int) << "\n";
"char " << sizeof (char) << "\n";
"bool " << sizeof (bool) << "\n";

short s = 0;

cout <<

long 1 =

cout <<

cout <<
cout <<
cout <<

"short int " << sizeof(s) << "\n";
0;
"long int " << sizeof(l) << "\n";

"unsigned short int " << sizeof (unsigned short) << "\n";
"unsigned int " << sizeof (unsigned) << "\n";
"unsigned long int " << sizeof (unsigned long) << "\n";

« Dev-C++ (and some other compilers) offers long long for 8-byte integers.

Programming Design — Variables and Arrays 81/62 Ling-Chieh Kung (NTU IM)



Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Overflow

* Be aware of overflow!
— Storing a value that 1s “too large” to a variable.

int 1 = 0;
short sGood = 32765;

while(i < 10)

{
short sBad = sGood + i;
cout < sGood + 1 <K " " < sBad < "\n";
i=1i+1;

Programming Design — Variables and Arrays 9/62 Ling-Chieh Kung (NTU IM)



Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Overflow

*  Why? Why 2.1 billions?
o 231-1=12147483647.

211

TR R

Source: http://disp.cc/m/tread.php?id=115-70Zv

Programming Design — Variables and Arrays 10/ 62 Ling-Chieh Kung (NTU IM)



Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

char

 char means a character.

— Use one byte (-128 to 127) to store English letters, numbers, symbols, and
special characters (e.g, the newline character).

— Cannot store, e.g, Chinese characters.

« [tisalsoan integer!
— These characters are encoded with the ASCII code in most PCs.
— ASCII = American Standard Code for Information Interchange.

— See the ASCII code mapping in your textbook.
* Nevertheless, avoid doing arithmetic on char.

Programming Design — Variables and Arrays 11/62 Ling-Chieh Kung (NTU IM)



Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Example: ASCII code table 1

« This program prints out common #include <iostream>
symbols and their ASCII codes. using namespace std;
int main()
{
for(int c = 33; c <= 126; C++)
{

coutLeckkk"";

char cAsChar = c;

cout << cAsChar << "\n";
}

return O;
}

Programming Design — Variables and Arrays 12 /62 Ling-Chieh Kung (NTU IM)



Basic data types

Constants and casting

Single-dimensional arrays

Multi-dimensional arrays

Example: ASCII code table 2

* Here i1s another version.
 \What is the difference?

#include <iostream>
using namespace std;

int main()

{
cout << " 012345678 9n";
cout << " 3 ",

}

for(int ¢ = 33; ¢ <= 126; c++)
{
if(c $ 10 = 0)
{
if(c / 10 <= 9)
coutk " ";
cout << ¢ / 10;
}
char cAsChar = c;
cout < " " L cAsChar;
if(c $ 10 = 9)
cout << "\n";
}
return O;

Programming Design — Variables and Arrays 13/62

Ling-Chieh Kung (NTU IM)



Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Literals in char type

« Use single quotation marks to make your char literal.
— char ¢ = 'c';
— char ¢ = 99;
« Some wrong ways of marking a character:
— Wrong: char ¢ = "c";
— Wrong: char ¢ = 'cc';
* More about char will be discussed when we talk about casting and strings.

Programming Design — Variables and Arrays 14 /62 Ling-Chieh Kung (NTU IM)



Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

float and double

« float and double are used to declare fractional numbers.
— Canbe 5.0, -6.2, etc.
— Can be 16.25e2 (1.625 x 103 or 1625), 7.33e-3 (0.00733), etc.
« They follow the IEEE floating point standards.
— float uses 4 bytes to store values between 1.4 x 10~*° and 3.4 x 1038,
— double uses 8 bytes to store values between 4.9 x 107324 and 1.8 x 10398,

« Dev-C++ (and some other compilers) offers long double as a 16-bytes
floating point data type.

Programming Design — Variables and Arrays 15/62 Ling-Chieh Kung (NTU IM)



Basic data types Constants and casting
Single-dimensional arrays Multi-dimensional arrays

Precision can be a big issue

« Consider the following program: #include<iostream>
) ] #include<cmath> // for sgrt()
 Nothing special. using namespace std;
int main()
{
for(int i = 0; i < 100; i++)
{
float £ = sqgrt(i);
cout <K fK""KLKEXFEK" ",
cout << "\n";
}
return O;
}

Programming Design — Variables and Arrays 16 /62 Ling-Chieh Kung (NTU IM)



Basic data types

Constants and casting

Single-dimensional arrays

Multi-dimensional arrays

Precision can be a big issue

* How about this: int bad = 0;
_ for(int i = 0; i < 100; i++)
* As modern computers store values in |
bits, most decimal fractional float f = sqrt(i);
numbers can only be approximated. cout K f K" "KEFEKK" T
{
— 1)1 1|1
3.315 0 0 cout << "1
— 34375 |11 ol1|1/1 bad++;
}
— 3.47 cout << "\n";
}
cout << "bad precision: " << bad;
Programming Design — Variables and Arrays 17/62 Ling-Chieh Kung (NTU IM) |



Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Precision can be a big issue

* Let’s see how big #include<iostream>

the errors are: #include<cmath> o
#include<iamanip> // for setprecision()
using namespace std;

int main ()
{
for(int i = 0; i < 100; i++)
{
float £ = sqrt(i);
cout << £ << " " K setprecision(1l0) << £ * £ " ";
cout << "\n";

}
return O;

}

Programming Design — Variables and Arrays 18/62 Ling-Chieh Kung (NTU IM)



Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Precision can be a big issue

* Remedy: “imprecise” comparisons.

if(abs(f * £ - i) > 0.0001)
{

cout << "t

bad++;
}

« The error tolerance can be neither too large nor too small.
— It should be set according to the property of your own problem.

« To learn more about this issue, study Numerical Methods, Numerical Analysis,
Scientific Computing, etc.

 Inthis course, we will play with only integers for most of the time.

Programming Design — Variables and Arrays 19/62 Ling-Chieh Kung (NTU IM)



Basic data types

Constants and casting

Single-dimensional arrays

Multi-dimensional arrays

bool

* ADbool variable uses 1 byte to record one Boolean
value: true or false.

— Two literals: true and £alse.
— 7 bits are wasted.
— All non-zero values are treated as true.

bool b = 0;
cout << b << "\n";

b=1;
cout << b << "\n";

b = 10;

* bool variables play an important role in control cout << b << "\n";

|
statements! b=0.1;
cout << b << "\n";
b=-1;
cout << b << "\n";
‘ Programming Design — Variables and Arrays 20/ 62 Ling-Chieh Kung (NTU IM) |



Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Outline

« Basic data types

« Constants and casting
 Single-dimensional arrays
« Multi-dimensional arrays

Programming Design — Variables and Arrays 21/62 Ling-Chieh Kung (NTU IM)



Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Constant variables

e Sometimes we want to use a variable to store a particular value.

— Ina program doing calculations regarding circles, the value of = may be
used repeatedly.

— We do not want to write many 3.14 throughout the program! Why?

— We may declare pi = 3.14 once and then use pi repeatedly.
 Inthis case, this variable is actually a symbolic constant.

— We want to prevent it from being modified.

Programming Design — Variables and Arrays 22 /62 Ling-Chieh Kung (NTU IM)



Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Constant variables

« Aconstant is one kind of variables.

« To declare a constant, use the key word const:
— const int a = 100;
— All further assignment operations on a constant generate compilation errors.
— That is why we must initialize a constant.

« [tissuggested to use capital characters and underlines to name constants.
This distinguishes them from usual variables.

— const double PI = 3.1416;
— const int MAX LEVEL = 5;
— Some people use lowercase characters and underlines.

Programming Design — Variables and Arrays 23 /62 Ling-Chieh Kung (NTU IM)



Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Casting

« Variables are containers.
« Variables of different types are containers of different sizes/shapes.
— long = int = short.
— “Shapes” of int and £loat are different (though sizes are identical).

* A big container may store a small item. A big item must be “cut” to be stored in
a small container.

— So are variables of different types.

short s = 100; double d=5; // d=5.0
int i =s; // 100 int s =5.5; // s =5
i = 100000;

s =1i; // -31072

Programming Design — Variables and Arrays 24 /62 Ling-Chieh Kung (NTU IM)



Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Casting

« Changing the type of a variable or literal is called casting.
« There are two kinds of casting:
— Implicit casting: from a small type to a large type.
— Explicit casting: from a large type to a small type.
« When implicit casting occurs, there is no value of precision loss.
— The system does that automatically.
— The value of that variable or literal does not change.

— There is no need for a programmer to indicate how to implicitly cast one
small type to a large type.

« To cast a large type to a small type, a programmer is responsible for indicating
how to do it explicitly.

Programming Design — Variables and Arrays 25/ 62 Ling-Chieh Kung (NTU IM)



Basic data types

Constants and casting

Single-dimensional arrays

Multi-dimensional arrays

Explicit casting

e Suppose we want to store 5.6 to an integer:

— int a = 5.6; Iisnotgood.

— int a = static cast<int>(5.6); Is better.
 To cast basic data types, we use static cast:

static_cast<type>(expression)

— When a float or double is cast to an integer value (and there is no value loss),
the fractional part is truncated.

* In the example above, both statements makes a equal 5.

— Then why bothering?

Programming Design — Variables and Arrays

26/62

Ling-Chieh Kung (NTU IM)



Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Explicit casting

Explicit casting is to indicate the way of casting we want.
— For basic types, there is only one way to cast a large type to a small type.
— For more complicated types, however, there may be multiple.
There are four different explicit casting operators.
— static cast, dynamic cast, reindivter cast, and const cast.
— For basic data types, static cast is enough.
By explicitly indicating how to cast:
— This is to make sure that, at the run time, the program runs as we expect.
— This is also to notify other programmers (or the future ourselves).
Explicit casting also allows for a temporary change of types (see below).

Programming Design — Variables and Arrays 27162 Ling-Chieh Kung (NTU IM)



Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Good programming style

« There is an old way of explicit casting:

(type) expression

— For example, int a = (int) 5.6; .
« Trytoavoid it!

— This operation includes all four possibilities, and we have no idea which one
will be performed at the run time.

 If possible, try to modify your variable declaration to avoid casting.

Programming Design — Variables and Arrays 28 /62 Ling-Chieh Kung (NTU IM)



Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Casting for division

* Let’s try this program:

int gradel = 0, grade2 = O;
cin >> gradel >> grade2?;
cout << (gradel + grade2) / 2;

« The division operator returns an integer if both operands (numerator and
denominator) are integers.

« How to get our desired results?
— If appropriate, we may change the data types of the operands.

double gradel = 0, grade2 = 0O;

— If not appropriate, we may cast the operands temporarily.

Programming Design — Variables and Arrays 29 /62 Ling-Chieh Kung (NTU IM)



Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Casting for division

 Which one works?

int gradel = 0, grade2 = 0;
cin >> gradel >> grade2;
cout << static cast<float>((gradel + grade2) / 2);

int gradel = 0, grade2 = 0;
cin >> gradel >> grade2;
cout << static cast<float>(gradel + grade2) / 2;

« (Casting can be a big issue when we work with nonbasic data types.
« At this moment, just be aware of fractional and integer values.

Programming Design — Variables and Arrays 30/62 Ling-Chieh Kung (NTU IM)



Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Casting a character to an integer

« Try to explain the following program:

char c = 254;
int a = 10;
cout << ¢ + a; // 8. Why?

« Avoid doing arithmetic on char.

Programming Design — Variables and Arrays 31/62 Ling-Chieh Kung (NTU IM)



Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Outline

« Basic data types

« Constants and casting

« Single-dimensional arrays
« Multi-dimensional arrays

Programming Design — Variables and Arrays 32/62 Ling-Chieh Kung (NTU IM)



Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Set of similar variables

* Suppose we want to write a program to store five students’ scores.

« We may declare 5 variables.
— int scorel, score2, score3, scored, score5;

« What if we have 500 students? How to declare 500 variables?
« Even if we have only 5, we are unable to write a loop to process them.

for(int i = 0; i < 5; i++)
{
cout << scorel; // and then?
cout << scorei; // error!

}

Programming Design — Variables and Arrays 33/62 Ling-Chieh Kung (NTU IM)



Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Why arrays?

« Anarray is a collection of variables with the same type.
« To declare five integer variables for scores, we may write:

int score[5];

— These variables are declared with the same array name (score).
— They are distinguished by their indices.

cin >> score[2]; cout << score[2] + score[3];

Programming Design — Variables and Arrays 34162 Ling-Chieh Kung (NTU IM)



Basic data types

Constants and casting

Single-dimensional arrays

Multi-dimensional arrays

An array Is a type

« Arrays are often used with loops.

— Quite often the loop counter is used
as the array index.

« An array is also a (nonbasic) type.

— The type of score is an “integer
array’” (of length 5).

— What is this?

int scorel[5];

for(int i = 0; i < 5; i++)
cin >> score[i];

for(int i = 0; i < 5; i++)
cout << score[i] < " ";

cout <L score;

« We will go back to this when we introduce pointers.
— For now, just treat an array as a sequence of variables.

Programming Design — Variables and Arrays 35/62

Ling-Chieh Kung (NTU IM)



Basic data types

Constants and casting

Single-dimensional arrays

Multi-dimensional arrays

Array declaration

« The grammar for declaring an array is

data type array name[number of elements];

* Eg, int score[5];
— This is an integer array with five elements (the
array length/size is 5).
— Each array element itself is a variable.

— The index starts at 0! They are score[0],
score[l], ..., and score[4].

« [toccupies 4 bytes X 5 = 20 continuous bytes.
— Try cout << sizeof (score) ;!

Address

Identifier

Value

0x20c648

Score[0]

0x20c64c

Score[1]

0x20c650

Score[2]

0x20c654

Score[3]

0x20c658

Score[4]

Memory

Programming Design — Variables and Arrays 36 /62

Ling-Chieh Kung (NTU IM)



Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

An example

* We have written a program for 5 scores: | int score[5];

for(int i = 0; i < 5; i++)
cin >> score[i];

for(int i = 0; i < 5; i++)
cout << score[i] <" ";

* |If we have 500 students: int score[500] ;

for(int i = 0; i < 500; i++)
cin >> scorel[i];

for(int i = 0; i < 500; i++)
cout << score[i] < " ";

Programming Design — Variables and Arrays 37162 Ling-Chieh Kung (NTU IM)



Basic data types Constants and casting

Single-dimensional arrays

Array Initialization

Multi-dimensional arrays

« Arrays are not initialized automatically.

int array[100];

for(int i = 0; i < 100; i++)
{
cout << array[i] << " ";
if (1 $ 10 = 9)
cout << "\n";

Programming Design — Variables and Arrays 38/62 Ling-Chieh Kung (NTU IM)



Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Array Initialization

« Various ways of initializing an array:

int daysInMonthl[12] = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
int daysInMonth2[] = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
cout << sizeof (daysInMonth2); // 4 * 12 = 48

int daysInMonth3[12] = {31, 28, 31}; // nine 0Os

int daysInMonth4[3] = {1, 2, 3, 4}; // error!

 To Initialize all elements to O: int array[100] = {0};

for(int 1 = 0; 1 < 100; i++)
{
cout << array[i] << " ";
if (1 $ 10 = 9)
cout << "\n";

Programming Design — Variables and Arrays 39/62 Ling-Chieh Kung (NTU IM)



Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Example: inner product

« This program calculates the inner product #include<iostream>
of two given 4-dimensional vectors. using namespace std;

* Do these exercises at home; int mai
main ()
— Modify the program to allow a user to {

decide the values of the two vectors. int a[4] = {1, 2, 3, 4};
i int b[4] = {4, 3, 2, 1};
— Write a program that calculate the
sum of two vectors. int ip = 0;

for(int 1 = 0; i < 4; it++)
ip += a[i] * b[1i];
cout << ip << "\n";

return O;

Programming Design — Variables and Arrays 40/ 62 Ling-Chieh Kung (NTU IM)



Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

The boundary of an array

* InC++, Itis allowed for one to “go outside an | int array[100] = {0};

array’’.
o for(int i = 0; i < 500; i++)
— No compilation error! {
— May or may not generate a run time ‘i";ufii i‘gra__Y[;; « T
error: If our program try to access a cout << "\n";
memory space allocated to another }

program, the operating system will
terminate our program.

— The result is unpredictable.

« A programmer must be aware of array bounds
by herself/himself.

Programming Design — Variables and Arrays 41162 Ling-Chieh Kung (NTU IM)



Basic data types

Constants and casting

Single-dimensional arrays

Multi-dimensional arrays

Memory allocation for arrays

« S0 what happens when we declare or access
an array?

* When we declare an array:

int score[5];

— The system allocates memory spaces
according to the type and length.

— The array variable indicates the
beginning address of the space.

cout << score; // 0x20c648 (Hexadecimal)

Address Identifier Value
0x20c648 score ?
0x20c64c ?
0x20c650 ?
0x20c654 ?
0x20c658 ?

Memory

Programming Design — Variables and Arrays 42 162

Ling-Chieh Kung (NTU IM)



Basic data types

Constants and casting

Single-dimensional arrays

Multi-dimensional arrays

Memory indexing for arrays

« When we access an array element:

— The array index indicates the amount of
offset for accessing a memory space.

— score[i] means to take the variable

stored at “starting from score, offset by

i units”.

cout << score + 2; // 0x20c650

* S0 score[i] Is always accepted by the
compiler for any value of i.

— Always be careful when using arrays!

Address Identifier Value
0x20c648 score ?
0x20c64c ?
0x20c650 ?
0x20c654 ?
0x20c658 ?

Memory

Programming Design — Variables and Arrays 43162

Ling-Chieh Kung (NTU IM)



Basic data types Constants and casting

Single-dimensional arrays

Finding the array length

Multi-dimensional arrays

« Sometimes we are given an array whose size is not known by us.
« One way of finding the array length is to use sizeof.
— It returns the total number of bytes allocated to that array.

« Suppose the array is named score, its length equals

sizeof (score) / sizeof (score[0]);

— sizeof (score) Is the total number of bytes allocated to the array.
— sizeof (score[0]) Is the number of bytes allocated to the first element.

Programming Design — Variables and Arrays 44 ] 62 Ling-Chieh Kung (NTU IM)



Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Finding the array length

« Example: Let’s print out all elements in an array:

int array[] = {1, 2, 3};
int length = sizeof (array) / sizeof (array[0]);
for(int 1 = 0; i < length; i++)

cout << array[i] << " ";

* When using sizeof to count the length of, e.g., an integer array:
— Use sizeof (a) / sizeof(a[0]).
— Do not use sizeof (a) / sizeof (int).

 Why?

Programming Design — Variables and Arrays 45/ 62 Ling-Chieh Kung (NTU IM)



Basic data types Constants and casting

Single-dimensional arrays

Example: finding the maximum

Multi-dimensional arrays

« How to find the maximum among many numbers?

« We want to write a program that: float value[10] = {0};
— Asks the user to input 10 numbers. o eate gy )
— Once 10 numbers are input, prints out
. // and then?
the maximum.

« How to find the maximum?
— Compare the first two and find the larger one.

— Use it to be compare with the third one.
— And so on.

Programming Design — Variables and Arrays 46/ 62 Ling-Chieh Kung (NTU IM)



Basic data types Constants and casting
Single-dimensional arrays Multi-dimensional arrays

Example: finding the maximum

e Let’s record the current maximum at max:

float value[l0] = {0};
for (int 1 = 0; i < 10; i++)
cin >> value[i];

float max = value[0];
for(int i = 1; i < 10; i++)
{

if (value[i] > max)
max = value[i];
}

cout << max;

Programming Design — Variables and Arrays 47 1 62 Ling-Chieh Kung (NTU IM)



Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Good programming style

 Itissuggested to declare a constant | const int VALUE LEN = 10;

and use It to: float value[VALUE LEN] = {0};
— Declare an array. for (int 1 = 0; i < VALUE LEN; i++)
cin >> value[i];
— Control any loop that traverses

the array. float max = value[0];
for (int i = 1; i < VALUE LEN; i++)
« Why? {

if (value[i] > max)
max = value[i];

}

cout << max;

Programming Design — Variables and Arrays 48 /62 Ling-Chieh Kung (NTU IM)



Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Things you cannot (should not) do

« Suppose that you have two arrays al and a2. int al[5] = {1, 2, 3, 4, 5};
— Even if they have the same length and int a2[5] = {0},
their elements have the same type, you // a2 = al; // error!
cannot write al = a2. Thisresultsin a for(int i = 0; i < 5; i++)
— You also cannot compare two arrays with }
=, >, <, etc.
* Why?

* aland a2 are just two memory addresses!

« To copy one array to another array, use a loop
to copy each element one by one.

Programming Design — Variables and Arrays 49 /62 Ling-Chieh Kung (NTU IM)



Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Things you cannot (should not) do

« Although allowed in Dev-C++, you should not // DO Ijo’g.do this
declare an array whose length is nonconstant. ;’l’z ’;;x;’
— This creates a syntax error in some compilers. // very bad!
int array([x];
— In ANSI C++, the length of an array must be array[2] = 3; // etc.
fixed when it is declared.
« To dynamically determine the array length: // Do this
i ) int x = 0;
— We will talk about this a few weeks later. cin > x;
« The index of an array variable should be integer. // good! : ,
int* array = new int[x];
— Some compiler allows a fractional index array[2] = 3; // etc.

(casting is done automatically).

Programming Design — Variables and Arrays 50/ 62 Ling-Chieh Kung (NTU IM)



Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Outline

« Basic data types

« Constants and casting
 Single-dimensional arrays
« Multi-dimensional arrays

Programming Design — Variables and Arrays 51/62 Ling-Chieh Kung (NTU IM)



Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Two-dimensional arrays

« While a one-dimensional array is like a vector, a two-dimensional array is like a
matrix or table.

 Intuitively, a two-dimensional array is composed by rows and columns.

— To declare a two-dimensional array, we should specify the numbers of rows
and columns.

data type array namel[rows] [columns] ;

* Asan example, let’s declare an array with 3 rows and 7 columns.

double score[3][7]:;

Programming Design — Variables and Arrays 52 /62 Ling-Chieh Kung (NTU IM)



Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Two-dimensional arrays

 double score[3][7];

0 1 2 3 4 5 6
0 | [0][0] | [O]I1] | [O][2]
. —

XLyl

— score[0] [0] is the 1st and score[0] [1] is the 2nd. What are x and y?

Programming Design — Variables and Arrays 53/62 Ling-Chieh Kung (NTU IM)



Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Two-dimensional arrays

« We may initialize a two-dimensional array as follows:

int scorel[2][3] = {{4, 5, 6}, {7, 8, 9}};
int score2[][3] = {4, 5, 6, 7, 8, 9}; // 2 can be omitted.

int score3[2][3] = {{4, 5}, {7, 8, 9}};
cout << score3[0][2]; // O

int scored[2][3] = {4, 5, 7, 8, 9};
cout << scored[0][2]; // 7

Programming Design — Variables and Arrays 54 /62 Ling-Chieh Kung (NTU IM)



Basic data types Constants and casting

Single-dimensional arrays

Example: tic-tac-toe

Multi-dimensional arrays

* Let’s write a program to detect the winner of a tic-tac-toe game:

int a[3] [3] = {{11 0/ 1}1 {11 1/ 0}/ {0/ O/ 1}}; X O X
for(int 1 = 0; 1 < 2; it++) X | X
{
if(a[1] [0] = a[i][1] && a[i][1] = a[i][2]) OO
{
cout << a[i] [0] << endl;
break;
}
}
// then check for colums and diagonals

Programming Design — Variables and Arrays 55/62 Ling-Chieh Kung (NTU IM)



Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Example: matrix additions

 Let’s write a program to do | int a[2]1[3] = {{1, 2, 3}, {1, 2, 3}};
: -, int b[2][3] = {{4, 5, 6}, {7, 8, 9}};
matrix additions. int c[2][3] = {0},

for(int i = 0; i < 2; it+) // matrix addition
for(int j =0; j < 3; jH)
c[i]l [j] = a[il[3] + b[il[3]:

for(int 1 = 0; i < 2; i ++) // print out c
{
for(int j =0; j < 3; j ++)
cout << c[i][j] << " ";
cout << "\n";
}

Programming Design — Variables and Arrays 56 / 62 Ling-Chieh Kung (NTU IM)



Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Example: matrix multiplications

« Let’s write a program to do matrix multiplications.

int a[2][3] = {1, 1, 1, 2, 2, 2};
int b[3][4] = {1, 1,1, 1, 2, 2, 2, 2, 3, 3, 3, 3};
int c[2][4] = {0};

for(int 1 = 0; 1 < 2; i++)
for(int §J =0; j < 4; jH)
for(int k = 0; k < 3; k++)
c[i] [J] += a[i]l [k] * b[k][]]~

// print out c

Programming Design — Variables and Arrays 57162 Ling-Chieh Kung (NTU IM)



Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Embedded one-dimensional arrays

« Two-dimensional arrays are not actually rows and columns.
« Atwo-dimensional array is actually several one-dimensional arrays.
0 1 2 3 4 5 6

score[0] | [0][O] | [O][1] | [O][2]

score[1] [1][0]

score[2] [2][0]

* Trythis: [ine ar21031;
cout <K a KK " " <K a[0] K" "KL a[l] K endl;

Programming Design — Variables and Arrays 58 /62 Ling-Chieh Kung (NTU IM)



Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Embedded one-dimensional arrays

 int a[2][3]; Address  Identifier Value
— a[0][0] is the first element.
— a[0] [1] is the second element. 0x20c648 | a[0] -
— a[1]1[0] is the fourth element. 0x20c64c ?
« Two dimensional arrays are stored linearly. 0x20c650 ?
— And still consecutively. 0x20c654 | 2l ?
 Try this: 0200658 ?
0x20c65¢c ?
int a[2] [3];
cout << a << " " << a[0] << "\n";
cout << a[l] << " " << a+ 1<k "\n";
cout << sizeof(a) << " " << sizeof(a[0]) << "\n";

Memory

Programming Design — Variables and Arrays 59 /62 Ling-Chieh Kung (NTU IM)



Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Embedded one-dimensional arrays

« So for a two dimensional array score:

— score[0] is the th one-dimensional array.
— score[i] [j] Isthe th element of the th one-dimensional array.
— score[i] isthe th one-dimensional array.

« Which description is more accurate?
— There is an array having three rows and seven columns.
— There is an array having three rows, each having seven elements.
« All these one-dimensional arrays must be of the same length.
— Two-dimensional arrays with various row lengths can be built with pointers.

Programming Design — Variables and Arrays 60/ 62 Ling-Chieh Kung (NTU IM)



Basic data types Constants and casting

Single-dimensional arrays Multi-dimensional arrays

Multi-dimensional arrays

« We may have arrays with even higher Address Identifier Value
dimensions (but hard to use).

— int threeDim[2] [3] [4];

— Thisisanarray of 2 X 3 X 4 = 24
integers.

— They together occupies 24 X 8 = 192
bytes (in a continuous space in the

memory). 0x20c65c | threeDim[1] [2] [3] ?
— threeDim s still the address of the
first element threeDim[0] [0] [0].

0x20c600 | threeDim[0] [0] [O] ?

0x20c604 | threeDim[0] [0] [1] ?

Memory

Programming Design — Variables and Arrays 61 /62 Ling-Chieh Kung (NTU IM)



Basic data types

Constants and casting

Single-dimensional arrays

Multi-dimensional arrays

Multi-dimensional arrays

threeDim

threeDim[1]

threeDim[1] [1]

[0][0][0]

[0][O][1]

[0][0][2]

[0][0][3]

[0][1][0]

[0][1][1]

[0][1][2]

[0][1][3]

[0][2][0]

[0][2][1]

[0][2][2]

[0][2][3]

[1][0][0]

[1][0][1]

[1][0][2]

[1][0][3]

[1][1][0]

[1][1][1]

[1][1][2]

[1][1][3]

[1][2][0]

[1][2][1]

[1][2][2]

[1][2][3]

[1][0][0]

[1][0][1]

[1][0][2]

[1][0][3]

[1][1][0]

[1][1][1]

[1][1][2]

[1][1][3]

[1][2][0]

[1][2][1]

[1][2][2]

[1][2][3]

[1][1][0]

[1][1][1]

[1][1][2]

[1][1][3]

Programming Design — Variables and Arrays

62 /62

Ling-Chieh Kung (NTU IM)




