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Object-oriented programming

• Until now, we have focused on procedural programming.

– The keys are logical controls and subprocedures, i.e., if, for, and functions. 

• We will begin to introduce a new programming philosophy: object-oriented 

programming (OOP).

– It is based on procedural programming.

– It is different in the perspective of thinking. 

• In C, we use structures; in C++, we use classes.

• Like structures, we can use classes to define data types by ourselves. 

– When we create variables with classes, they are called objects. 

• Using classes properly enhances modularity and makes large-scale system 

design and development easier. 
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An example

• Recall that we have the structure Point (which is a two-dimensional vector). 

• Let’s implement a multi-dimensional vector: 

void MyVector::init(int dim) {

n = dim;

m = new int[n]; 

for(int i = 0; i < n; i++)

m[i] = 0;

}

void MyVector::print() {

cout << "(";

for(int i = 0; i < n - 1; i++)

cout << m[i] << ", ";

cout << m[n-1] << ")\n";

}

int main()

{

MyVector v;

v.init(3);

v.m[0] = 1;

v.print(); // (3, 0, 0)

delete [] v.m;

return 0;

}

struct MyVector

{

int n; 

int* m; 

void init(int dim); 

void print(); 

};
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Some drawbacks

• We may forget to initialize the vector. 

• Another programmer may print out a vector in a bad way. 

• n and the length of the dynamic array mmay be inconsistent. 

• We may forget to release the spaces allocated dynamically. 

MyVector v;

int dim = 3;

v.init(dim);

v.n = 6; 

delete [] v.m;

MyVector a;

int dim = 0;

cin >> dim;

a.init(dim);

// no delete

MyVector v;

v.print();

delete [] v.m;

MyVector v;

v.init(3);

cout << "<";

for(int i = 0; i < 5; i++)

cout << m[i] << "-";

cout << m[n-1] << "]";

// <3-0-0]

delete [] v.m;
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Some drawbacks

• Our hopes: 

– The initializer can be called automatically. 

– The vector can be printed only in allowed ways. 

– n and the length of the dynamic array m cannot be modified separately. 

– Spaces allocated dynamically will be released automatically. 

• These issues emerge when multiple programmers collaborate in one project. 

• In C++, a class can: 

– Define member functions that will be called automatically when and only 

when an object is created/destroyed. 

– Hide some members and open only allowed members to the public. 

– And many more. 
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Instance vs. static variables/functions

• In a class, we can define member variables and member functions:

– Instance variables (default).

– Static variables.

– Instance functions (default).

– Static functions.

• Starting from now, when we say member variables (fields) and member 

functions, we are talking about instance ones.
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Class definition

• To define a class: 

– Simply change struct to class. 

– We may also define the function inside 

the class definition block. 

• Compilation error! Why? 

void MyVector::init(int dim)

{

n = dim;

m = new int[n]; 

for(int i = 0; i < n; i++)

m[i] = 0;

}

void MyVector::print()

{

cout << "(";

for(int i = 0; i < n - 1; i++)

cout << m[i] << ", ";

cout << m[n-1] << ")\n";

}

class MyVector

{

int n; 

int* m; 

void init(int dim); 

void print(); 

};

int main()

{

MyVector v;

v.init(5);

delete [] v.m;

return 0;

}

Basic concepts Constructors and the destructor

Friends and static members Object pointers and the copy constructor



Ling-Chieh Kung (NTU IM)Programming Design – Classes 9 / 52

Visibility

• We can/must set visibility of members in a class:

– Public members can be accessed anywhere.

– Private members can be accessed only in the class.

– Protected members will be discussed later in this semester. 

• These three keywords are the visibility modifiers. 

• By default, all members’ visibility level is private. 

– That is why v.init(5) generates a compilation error; init() is private 

and cannot be invoked outside the class (e.g., in the main function). 

• By setting visibility, we can hide/open our instance members. 

– Usually all instance variables are private. 

– Let’s see how to do this. 
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Visibility

• A class with 

different visibility 

levels: 

• Private instance 

members can only 

be accessed inside

the definition of 

instance functions. 

• Public instance 

members can be 

accessed 

everywhere. 

class MyVector

{

private:

int n; 

int* m; 

public:

void init(int dim); 

void print(); 

};

int main()

{

MyVector v;

v.init(5); // OK!

delete [] v.m;

return 0;

}

void MyVector::init(int dim)

{

n = dim;

m = new int[n]; 

for(int i = 0; i < n; i++)

m[i] = 0;

}

void MyVector::print()

{

cout << "(";

for(int i = 0; i < n - 1; i++)

cout << m[i] << ", ";

cout << m[n-1] << ")\n";

}
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Data hiding 

• Setting members to private is to do data 

hiding. Why bother?

– By setting members to private, we 

control the way that they are accessed.

• Therefore, 

– Now we can prevent inconsistency 
between n and the length of m. 

– We can prevent a vector from being 

printed out in strange formats, such as 

{0, 10, 20}, [0, 10, 20), (0-10-20), etc. 

• Public member functions are often called interfaces.

– All others should communicate with the class through interfaces.

int main()

{

MyVector v;

v.init(5); // fine

v.n = 3; // compilation error!

v.print();

delete [] v.m;

return 0;

}
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Visibility

• In general, some instance variables/functions should not be accessed directly (or 

even known) by other ones. 

– They should be used only in the class.

– In this case, set them private. 

• You may see many classes with all instance variables private and all instance 

functions public.

– If you do not know what to do, do this. 

– However, any instance function that should not be invoked by others

should also be private. 
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Encapsulation

• The concepts of packaging (grouping member variables and member functions) 

and data hiding together form the concept of “encapsulation”.

– Roughly speaking, we pack data (member variables) into a black box and 

provide only controlled interfaces (member functions) for others to access 

these data. 

– Others should not even know how those interfaces are implemented. 

• For OOP, there are three main characteristics/functionalities: 

– Encapsulation. 

– Inheritance. 

– Polymorphism. 

• The last two will be discussed later in this semester. 
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Instance function overloading

• We can overload an instance 

function with different parameters.

void MyVector::init() 

{

n = 0;

m = nullptr;

}

void MyVector::init(int dim) 

{

init(dim, 0);

}

void MyVector::init(int dim, int value) 

{

n = dim;

m = new int[n]; 

for(int i = 0; i < n; i++)

m[i] = value;

}

class MyVector

{

private:

int n; 

int* m; 

public:

void init();

void init(int dim); 

void init(int dim, int value);  

void print(); 

};
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Objects for functions and class members

• We can pass an object into any function and/or return an object. 

• An instance variable’s type can be a class. 

MyVector add(MyVector v1, MyVector v2);

class MyTriangle

{

private:

MyVector vertex1;

MyVector vertex2;

MyVector vertex3;

// ...

};

class MyPolytope

{

private:

int vertexCount; 

MyVector* vertex;

// ...

};
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Our hopes

• Recall our hopes: 

– The initializer can be called automatically. 

– The vector can be printed only in allowed 

ways. 

– n and the length of the dynamic array m

cannot be modified separately. 

– Spaces allocated dynamically will be 

released automatically. 

• The second and third have been done. 

• The first and the last require constructors and 

destructors. 

class MyVector

{

private:

int n; 

int* m; 

public:

void init();

void init(int dim); 

void init(int dim, int value);  

void print(); 

};
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Constructors

• A constructor is an instance function of a class. 

– However, it is very special.

• A constructor will be invoked automatically when the object is created.  

– It must be invoked. 

– It cannot be invoked twice.

– It cannot be invoked by the programmer manually. 

• Usually it is used to initialize the object. 
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Constructors

• A constructor’s name is the same as the class.

• It does not return anything, not even void. 

• You can (and usually will) overload them.

• The constructor with no parameter is the 

default constructor.

• If, and only if, a programmer does not define 

any constructor, the compiler makes a 

default one which does nothing. 

• A constructor may be private. 

– Be invoked only by other constructors. 

class MyVector

{

private:

int n; 

int* m; 

public:

MyVector(); // constructors

MyVector(int dim); 

MyVector(int dim, int value);  

void print(); 

};
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Constructors for MyVector

• Let’s define our class MyVectorwith constructors:

– Just like usual functions, a constructor may have a default argument.

class MyVector

{

private:

int n; 

int* m; 

public:

MyVector();

MyVector(int dim, int value = 0); 

void print(); 

};

MyVector::MyVector()

{

n = 0;

m = nullptr;

}

MyVector::MyVector(int dim, int value)

{

n = dim;

m = new int[n]; 

for(int i = 0; i < n; i++)

m[i] = value;

}
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Constructors for MyVector

• Now, in the main function, we assign initial values when we declare objects: 

• If any member variable needs an initial value when an object is created, you 

should write a constructor to initialize it. 

• Use constructor overloading to provide flexibility. 

int main()

{

MyVector v1(1);

MyVector v2(3, 8);

v1.print(); // (0)

v2.print(); // (8, 8, 8)

return 0;

}
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Destructors

• A destructor is invoked right 

before an object is destroyed. 

– It must be public and 

have no parameter. 

– The compiler provides a 

default destructor that 

does nothing. 

• To define your own 
destructor, use ~. 

– Typically we release 

dynamically allocated 

space in a destructor.

MyVector::MyVector

(int dim, int value)

{

n = dim;

m = new int[n]; 

for(int i = 0; i < n; i++)

m[i] = value;

}

int main()

{

if (true) 

MyVector v1(1); 

// no memory leak

return 0;

}

class MyVector

{

private:

int n;

int* m;

public:

// ...

~MyVector();

};

MyVector::

~MyVector()

{ 

delete [] m;

}
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Timing for constructors/destructors

• When a class has other classes as types of instance 

variables, when are all the constructors/destructors 

invoked? 

class A

{

public:

A() { cout << "A\n"; }

~A() { cout << "a\n"; }

};

class B

{

private:

A a;

public:

B() { cout << "B\n"; }

~B() { cout << "b\n"; }

};

int main()

{

B b;

return 0;

}
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Getters and setters

• In most cases, instance variables are private. 

• For them to be accessed, sometimes people 

implement getters and setters for them. 

– A getter simply returns the value of a private 

instance variable. 

– A setter simply modifies a private instance 

variables to a given value. 

• What are the benefits and costs for having 

getters and setters? 

class MyVector

{

private:

int n;

int* m;

public:

// ...

int getN() { return n; }

void setN(int v) { n = v; }

};
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friend for functions and classes

• To “open” private members, another way is to declare “friends.”

• One class can allow its friends to access its private members.

• Its friends can be global functions or other classes. 

– Then inside test() and member functions of Test, 

those private members of MyVector can be accessed. 

– MyVector cannot access Test’s members. 

• A friend can be declared in either the public or private 

section. It does not matter. 

• A class must declare its friends by itself. 

– One cannot declare itself as another one’s friend! 

class MyVector

{

// ...

friend void test(); 

friend class Test;

};
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friend: an example

void test() {

MyVector v;

v.n = 100; // syntax error if not a friend

cout << v.n; // syntax error if not a friend

}

class Test {

public:

void test(MyVector v) {

v.n = 200; // syntax error if not a friend

cout << v.n; // syntax error if not a friend

}

};
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friend for functions and classes

• Declare friends only if data hiding is preserved. 

– Do not set everything public! 

– Use structures rather than classes when nothing should be private (this is 

recommended but not required). 

– Be careful in offering public member functions (e.g., getters and setters). 

• friend in fact help you hide data.

– If a private member should be accessed only by another class/function, we 

should declare a friend instead of writing a getter/setter. 
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Static members   

• A class contains some instance variables and functions. 

– Each object has its own copy of instance variables and functions. 

• A member variable/function may be an attribute/operation of a class. 

– When the attribute/operation is class-specific rather than object-specific. 

– A class-specific attribute/operation should be identical for all objects. 

• These variables/functions are called static members. 
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• In MS Windows, each window is 

an object. 

– Windows is written in C++. 

– Mac OS is written in 

Objective-C. 

• Each window has some object-

specific attributes. 

• They also share one class-specific 

attribute: the color of their title 

bars. 

Static members: an example  

class Window

{

private:

int width;

int height;

int locationX;

int locationY; 

int status; // 0: min, 1: usual, 2: max

static int barColor; // 0: gray, ...

// ...

public:

static int getBarColor(); 

static void setBarColor(int color);

// ...

};
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Static members: an example 

• We have to initialize a static 

variable globally. 

• To access static members, use 
class name::member name.

int main()

{

Window w; // not used

cout << Window::getBarColor();

cout << "\n";

Window::setBarColor(1);

return 0;

}

int Window::barColor = 0; // default

int Window::getBarColor()

{

return barColor;

}

void Window::setBarColor(int color)

{

barColor = color;

}
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Static members

• Recall that we have four types of members: 

– Instance variables and instance functions. 

– Static variables and static functions. 

• Some rules regarding static members: 

– We may access a static member inside an instance function. 

– We cannot access an instance member inside a static function. 

– Though not suggested, we may access a static member through an object. 

Window w;

cout << w.getBarColor() << "\n";
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Good programming style

• If one attribute should be identical for all objects, it should be declared as a 

static variable. 

– Do not make it an instance variable and try to maintain consistency. 

• Do not use an object to invoke a static member. 

– This will confuse the reader.

• Use class name::member name even inside member function definition 

to show that it is a static member. 

int Window::getBarColor()

{

return Window::barColor;

}
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Another way of using static members

• One may use a static global variable to count the number of times a global 

function is invoked. 

• One may use a static member variable to count for how many times an object 

is created. 

class A

{

private:

static int count;

public:

A() { A::count++; }

static int getCount()

{ return A::count; }

};

int A::count = 0;

int main()

{

A a1, a2, a3;

cout << A::getCount() << "\n"; // 3

return 0;

}
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Another way of using static members

• With the help of the destructor, we may keep a record on the number of active

(alive) objects. 

class A

{

private:

static int count;

public:

A() { A::count++; }

~A() { A::count--; }

static int getCount() 

{ return A::count; }

};

int A::count = 0;

int main()

{

if(true)

A a1, a2, a3;

cout << A::getCount() << "\n"; // 0

return 0;

}
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Object pointers

• A class is a (self-defined) data type. 

• A pointer may point to any data type. 

– A pointer may point to an object, i.e., store the address of an object. 

• For example: 

int main()

{

MyVector v(5);

MyVector* ptrV = &v; // object pointer

return 0;

}
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Object pointers

• What we have done is to use an object to invoke instance functions. 

– E.g., a.print()where a is an object and print() is an instance function.

• If we have a pointer ptrA pointing to the object a, we may write 

(*ptrA).print() to invoke the instance function print(). 

– *ptrA returns the object a. 

• To simplify this, C++ offers the member access 
operator ->. 

– This is specifically for an object pointer to access 

its members. 

– (*ptrA).print() is equivalent to 

ptrA->print().

int main()

{

MyVector v(5);

MyVector* ptrV = &v;

v.print();

ptrV->print();  

return 0;

}

Basic concepts Constructors and the destructor

Friends and static members Object pointers and the copy constructor



Ling-Chieh Kung (NTU IM)Programming Design – Classes 39 / 52

Why object pointers?

• Object pointers can be more useful than pointers for basic data types. Why? 

• When one creates an array of objects, only the default constructor may be 

invoked. 

– Creating an array of object pointers delays the invocation of constructors. 

– These pointers than point to dynamically allocated objects. 

• Passing a pointer into a function can be more efficient than passing the object.

– A pointer can be much smaller than an object. 

– Copying a pointer is easier than copying an object. 

• Other reasons will be discussed in other lectures.
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• We may also create object arrays. 

– The default constructor will be invoked. 

– There is no way to invoke other constructors. 

– We must implement other functions to assign proper values to instance 

variables. 

Static object arrays

int main()

{

MyVector v[3]; // an object array

v[0].print(); // run-time error!

return 0;

}
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• Object pointers allow us to do dynamic 

memory allocation. 

• Object pointers allow us to create 

dynamic arrays. 

Dynamic object arrays

int main()

{

MyVector* ptrV = new MyVector(5);

ptrV->print(); 

delete ptrV;

return 0;

}

int main()

{

MyVector* ptrV = new MyVector[5];

ptrV[0].print(); // run-time error

delete [] ptrV;

return 0;

}
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Object pointer arrays

• To delay the invocation of constructors, we create an object pointer array. 

– Each pointer then points to a dynamic object. 

Basic concepts Constructors and the destructor
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ptrArray[0]->print(); // (0)

// some delete statements

return 0;

}
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Passing objects into a function

• Consider a function that takes three vectors and returns their sum. 

– We need to create four MyVector objects in this function. 

MyVector sum

(MyVector v1, MyVector v2, MyVector v3)

{

// assume that their dimensions are identical

int n = v1.getN(); 

int* sov = new int[n];

for(int i = 0; i < n; i++) 

sov[i] = v1.getM(i) + v2.getM(i) + v3.getM(i);

MyVector sumOfVec(n, sov); 

return sumOfVec; 

}

int MyVector::getN() 

{ return n; }

int MyVector::getM(int i) 

{ return m[i]; }

MyVector::MyVector

(int d, int v[])

{

n = d;

for(int i = 0; i < n; i++)

m[i] = v[i];

}
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Passing object pointers into a function

• We may pass pointers rather than objects into this function: 

– We need to create only one MyVector object in this function. 

– Nevertheless, using pointers to access members requires more time.  

MyVector sum(MyVector* v1, MyVector* v2, MyVector* v3)

{

// assume that their dimensions are identical

int n = v1->getN(); 

int* sov = new int[n];

for(int i = 0; i < n; i++) 

sov[i] = v1->getM(i) + v2->getM(i) + v3->getM(i);

MyVector sumOfVec(n, sov); 

return sumOfVec; 

}
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Passing object references 

• We may also pass references: 

– We create only one MyVector object in this function.

MyVector sum(MyVector& v1, MyVector& v2, MyVector& v3)

{

// assume that their dimensions are identical

int n = v1.getN(); 

int* sov = new int[n];

for(int i = 0; i < n; i++) 

sov[i] = v1.getM(i) + v2.getM(i) + v3.getM(i);

MyVector sumOfVec(n, sov); 

return sumOfVec; 

}
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Constant references 

• While we may want to pass references to save time, we need to protect our 

arguments from being modified. 

– Save time while being safe! 

• Should we do the same thing when passing object pointers? 

MyVector sum

(const MyVector& v1, const MyVector& v2, const MyVector& v3)

{

// ...

}
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Copying an object

• Consider the following program: 

• Why just one “A” when invoking f()?

class A

{

private:

int i;

public:

A() { cout << "A"; }

};

void f(A a1, A a2, A a3)

{

A a4;

}

int main()

{

A a1, a2, a3; // AAA

cout << "\n===\n";

f(a1, a2, a3); // A

return 0;

}
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Copying an object

• In general, when we pass by value, a local variable will be created. 

– When we pass by value for an object, a local object is created. 

– The constructor should be invoked. 

– So why just one “A” when invoking f()? 

• How about this? 

– No constructor is invoked when a4 is created? 
int main()

{

A a1, a2, a3; // AAA

cout << "\n===\n"; 

A a4 = a1; // nothing!

return 0;

}
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Copying an object

• Creating an object by “copying” an object is a special operation. 

– When we pass an object into a function using the 

call-by-value mechanism. 

– When we assign an object to another object. 

– When we create an object with another object as the 

argument of the constructor. 

• When this happens, the copy constructor will be invoked. 

– If the programmer does not define one, the compiler adds a default copy 

constructor (which of course does not print out anything) into the class. 

– The default copy constructor simply copies all member variables one by one, 

regardless of the variable types. 

f(a1, a2, a3);

A a4 = a1;

A a5(a1);
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Copy constructors

• We may implement our own copy constructor. 

– In the C++ standard, the parameter must be a constant reference. 

– If calling by value, it will invoke itself infinitely many times. 

class A

{

private:

int i;

public:

A() { cout << "A"; }

A(const A& a) { cout << "a"; }

};

void f(A a1, A a2, A a3)

{

A a4;

}

int main()

{

A a1, a2, a3; // AAA

cout << "\n===\n";

f(a1, a2, a3); // aaaA

return 0;

}
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Copy constructors for MyVector

• For MyVector, one way to implement a 

copy constructor is 

– This has nothing different from the 

default copy constructor. 

– If no member is an array/pointer, 

the default copy constructor is fine. 

• If there is any array or pointer member 

variable, the default copy constructor does 

“shallow copy”. 

– And two different vectors may share 

the same space for values. 

– Modifying one vector affects the other! 

MyVector::MyVector

(const MyVector& v)

{

n = v.n;

m = v.m; 

}

int main()

{

MyVector v1(5, 1);

MyVector v2(v1); // what is bad? 

}
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Deep copy

• To correctly copy a vector (by creating new values), we need to write our own 

copy constructor. 

• We say that we implement “deep copy” by ourselves. 

– In the self-defined copy constructor, we manually create another dynamic 

array, set its elements’ values according to the original array, and use m to 

record its address. 

MyVector::MyVector(const MyVector& v)

{

n = v.n;

m = new int[n]; // deep copy

for(int i = 0; i < n; i++)

m[i] = v.m[i];

}
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