
Ling-Chieh Kung (NTU IM)Programming Design – Classes 1 / 52

Programming Design

Classes

Ling-Chieh Kung

Department of Information Management

National Taiwan University

Basic concepts Constructors and the destructor

Friends and static members Object pointers and the copy constructor

Ling-Chieh Kung (NTU IM)Programming Design – Classes 2 / 52

Object-oriented programming

• Until now, we have focused on procedural programming.

– The keys are logical controls and subprocedures, i.e., if, for, and functions.

• We will begin to introduce a new programming philosophy: object-oriented

programming (OOP).

– It is based on procedural programming.

– It is different in the perspective of thinking.

• In C, we use structures; in C++, we use classes.

• Like structures, we can use classes to define data types by ourselves.

– When we create variables with classes, they are called objects.

• Using classes properly enhances modularity and makes large-scale system

design and development easier.

Basic concepts Constructors and the destructor

Friends and static members Object pointers and the copy constructor

Ling-Chieh Kung (NTU IM)Programming Design – Classes 3 / 52

Outline

• Basic concepts

• Constructors and the destructor

• Friends and static members

• Objects pointers and the copy constructor

Basic concepts Constructors and the destructor

Friends and static members Object pointers and the copy constructor

Ling-Chieh Kung (NTU IM)Programming Design – Classes 4 / 52

An example

• Recall that we have the structure Point (which is a two-dimensional vector).

• Let’s implement a multi-dimensional vector:

void MyVector::init(int dim) {

n = dim;

m = new int[n];

for(int i = 0; i < n; i++)

m[i] = 0;

}

void MyVector::print() {

cout << "(";

for(int i = 0; i < n - 1; i++)

cout << m[i] << ", ";

cout << m[n-1] << ")\n";

}

int main()

{

MyVector v;

v.init(3);

v.m[0] = 1;

v.print(); // (3, 0, 0)

delete [] v.m;

return 0;

}

struct MyVector

{

int n;

int* m;

void init(int dim);

void print();

};

Basic concepts Constructors and the destructor

Friends and static members Object pointers and the copy constructor

Ling-Chieh Kung (NTU IM)Programming Design – Classes 5 / 52

Some drawbacks

• We may forget to initialize the vector.

• Another programmer may print out a vector in a bad way.

• n and the length of the dynamic array mmay be inconsistent.

• We may forget to release the spaces allocated dynamically.

MyVector v;

int dim = 3;

v.init(dim);

v.n = 6;

delete [] v.m;

MyVector a;

int dim = 0;

cin >> dim;

a.init(dim);

// no delete

MyVector v;

v.print();

delete [] v.m;

MyVector v;

v.init(3);

cout << "<";

for(int i = 0; i < 5; i++)

cout << m[i] << "-";

cout << m[n-1] << "]";

// <3-0-0]

delete [] v.m;

Basic concepts Constructors and the destructor

Friends and static members Object pointers and the copy constructor

Ling-Chieh Kung (NTU IM)Programming Design – Classes 6 / 52

Some drawbacks

• Our hopes:

– The initializer can be called automatically.

– The vector can be printed only in allowed ways.

– n and the length of the dynamic array m cannot be modified separately.

– Spaces allocated dynamically will be released automatically.

• These issues emerge when multiple programmers collaborate in one project.

• In C++, a class can:

– Define member functions that will be called automatically when and only

when an object is created/destroyed.

– Hide some members and open only allowed members to the public.

– And many more.

Basic concepts Constructors and the destructor

Friends and static members Object pointers and the copy constructor

Ling-Chieh Kung (NTU IM)Programming Design – Classes 7 / 52

Instance vs. static variables/functions

• In a class, we can define member variables and member functions:

– Instance variables (default).

– Static variables.

– Instance functions (default).

– Static functions.

• Starting from now, when we say member variables (fields) and member

functions, we are talking about instance ones.

Basic concepts Constructors and the destructor

Friends and static members Object pointers and the copy constructor

Ling-Chieh Kung (NTU IM)Programming Design – Classes 8 / 52

Class definition

• To define a class:

– Simply change struct to class.

– We may also define the function inside

the class definition block.

• Compilation error! Why?

void MyVector::init(int dim)

{

n = dim;

m = new int[n];

for(int i = 0; i < n; i++)

m[i] = 0;

}

void MyVector::print()

{

cout << "(";

for(int i = 0; i < n - 1; i++)

cout << m[i] << ", ";

cout << m[n-1] << ")\n";

}

class MyVector

{

int n;

int* m;

void init(int dim);

void print();

};

int main()

{

MyVector v;

v.init(5);

delete [] v.m;

return 0;

}

Basic concepts Constructors and the destructor

Friends and static members Object pointers and the copy constructor

Ling-Chieh Kung (NTU IM)Programming Design – Classes 9 / 52

Visibility

• We can/must set visibility of members in a class:

– Public members can be accessed anywhere.

– Private members can be accessed only in the class.

– Protected members will be discussed later in this semester.

• These three keywords are the visibility modifiers.

• By default, all members’ visibility level is private.

– That is why v.init(5) generates a compilation error; init() is private

and cannot be invoked outside the class (e.g., in the main function).

• By setting visibility, we can hide/open our instance members.

– Usually all instance variables are private.

– Let’s see how to do this.

Basic concepts Constructors and the destructor

Friends and static members Object pointers and the copy constructor

Ling-Chieh Kung (NTU IM)Programming Design – Classes 10 / 52

Visibility

• A class with

different visibility

levels:

• Private instance

members can only

be accessed inside

the definition of

instance functions.

• Public instance

members can be

accessed

everywhere.

class MyVector

{

private:

int n;

int* m;

public:

void init(int dim);

void print();

};

int main()

{

MyVector v;

v.init(5); // OK!

delete [] v.m;

return 0;

}

void MyVector::init(int dim)

{

n = dim;

m = new int[n];

for(int i = 0; i < n; i++)

m[i] = 0;

}

void MyVector::print()

{

cout << "(";

for(int i = 0; i < n - 1; i++)

cout << m[i] << ", ";

cout << m[n-1] << ")\n";

}

Basic concepts Constructors and the destructor

Friends and static members Object pointers and the copy constructor

Ling-Chieh Kung (NTU IM)Programming Design – Classes 11 / 52

Data hiding

• Setting members to private is to do data

hiding. Why bother?

– By setting members to private, we

control the way that they are accessed.

• Therefore,

– Now we can prevent inconsistency
between n and the length of m.

– We can prevent a vector from being

printed out in strange formats, such as

{0, 10, 20}, [0, 10, 20), (0-10-20), etc.

• Public member functions are often called interfaces.

– All others should communicate with the class through interfaces.

int main()

{

MyVector v;

v.init(5); // fine

v.n = 3; // compilation error!

v.print();

delete [] v.m;

return 0;

}

Basic concepts Constructors and the destructor

Friends and static members Object pointers and the copy constructor

Ling-Chieh Kung (NTU IM)Programming Design – Classes 12 / 52

Visibility

• In general, some instance variables/functions should not be accessed directly (or

even known) by other ones.

– They should be used only in the class.

– In this case, set them private.

• You may see many classes with all instance variables private and all instance

functions public.

– If you do not know what to do, do this.

– However, any instance function that should not be invoked by others

should also be private.

Basic concepts Constructors and the destructor

Friends and static members Object pointers and the copy constructor

Ling-Chieh Kung (NTU IM)Programming Design – Classes 13 / 52

Encapsulation

• The concepts of packaging (grouping member variables and member functions)

and data hiding together form the concept of “encapsulation”.

– Roughly speaking, we pack data (member variables) into a black box and

provide only controlled interfaces (member functions) for others to access

these data.

– Others should not even know how those interfaces are implemented.

• For OOP, there are three main characteristics/functionalities:

– Encapsulation.

– Inheritance.

– Polymorphism.

• The last two will be discussed later in this semester.

Basic concepts Constructors and the destructor

Friends and static members Object pointers and the copy constructor

Ling-Chieh Kung (NTU IM)Programming Design – Classes 14 / 52

Instance function overloading

• We can overload an instance

function with different parameters.

void MyVector::init()

{

n = 0;

m = nullptr;

}

void MyVector::init(int dim)

{

init(dim, 0);

}

void MyVector::init(int dim, int value)

{

n = dim;

m = new int[n];

for(int i = 0; i < n; i++)

m[i] = value;

}

class MyVector

{

private:

int n;

int* m;

public:

void init();

void init(int dim);

void init(int dim, int value);

void print();

};

Basic concepts Constructors and the destructor

Friends and static members Object pointers and the copy constructor

Ling-Chieh Kung (NTU IM)Programming Design – Classes 15 / 52

Objects for functions and class members

• We can pass an object into any function and/or return an object.

• An instance variable’s type can be a class.

MyVector add(MyVector v1, MyVector v2);

class MyTriangle

{

private:

MyVector vertex1;

MyVector vertex2;

MyVector vertex3;

// ...

};

class MyPolytope

{

private:

int vertexCount;

MyVector* vertex;

// ...

};

Basic concepts Constructors and the destructor

Friends and static members Object pointers and the copy constructor

Ling-Chieh Kung (NTU IM)Programming Design – Classes 16 / 52

Outline

• Basic concepts

• Constructors and the destructor

• Friends and static members

• Objects pointers and the copy constructor

Basic concepts Constructors and the destructor

Friends and static members Object pointers and the copy constructor

Ling-Chieh Kung (NTU IM)Programming Design – Classes 17 / 52

Our hopes

• Recall our hopes:

– The initializer can be called automatically.

– The vector can be printed only in allowed

ways.

– n and the length of the dynamic array m

cannot be modified separately.

– Spaces allocated dynamically will be

released automatically.

• The second and third have been done.

• The first and the last require constructors and

destructors.

class MyVector

{

private:

int n;

int* m;

public:

void init();

void init(int dim);

void init(int dim, int value);

void print();

};

Basic concepts Constructors and the destructor

Friends and static members Object pointers and the copy constructor

Ling-Chieh Kung (NTU IM)Programming Design – Classes 18 / 52

Constructors

• A constructor is an instance function of a class.

– However, it is very special.

• A constructor will be invoked automatically when the object is created.

– It must be invoked.

– It cannot be invoked twice.

– It cannot be invoked by the programmer manually.

• Usually it is used to initialize the object.

Basic concepts Constructors and the destructor

Friends and static members Object pointers and the copy constructor

Ling-Chieh Kung (NTU IM)Programming Design – Classes 19 / 52

Constructors

• A constructor’s name is the same as the class.

• It does not return anything, not even void.

• You can (and usually will) overload them.

• The constructor with no parameter is the

default constructor.

• If, and only if, a programmer does not define

any constructor, the compiler makes a

default one which does nothing.

• A constructor may be private.

– Be invoked only by other constructors.

class MyVector

{

private:

int n;

int* m;

public:

MyVector(); // constructors

MyVector(int dim);

MyVector(int dim, int value);

void print();

};

Basic concepts Constructors and the destructor

Friends and static members Object pointers and the copy constructor

Ling-Chieh Kung (NTU IM)Programming Design – Classes 20 / 52

Constructors for MyVector

• Let’s define our class MyVectorwith constructors:

– Just like usual functions, a constructor may have a default argument.

class MyVector

{

private:

int n;

int* m;

public:

MyVector();

MyVector(int dim, int value = 0);

void print();

};

MyVector::MyVector()

{

n = 0;

m = nullptr;

}

MyVector::MyVector(int dim, int value)

{

n = dim;

m = new int[n];

for(int i = 0; i < n; i++)

m[i] = value;

}

Basic concepts Constructors and the destructor

Friends and static members Object pointers and the copy constructor

Ling-Chieh Kung (NTU IM)Programming Design – Classes 21 / 52

Constructors for MyVector

• Now, in the main function, we assign initial values when we declare objects:

• If any member variable needs an initial value when an object is created, you

should write a constructor to initialize it.

• Use constructor overloading to provide flexibility.

int main()

{

MyVector v1(1);

MyVector v2(3, 8);

v1.print(); // (0)

v2.print(); // (8, 8, 8)

return 0;

}

Basic concepts Constructors and the destructor

Friends and static members Object pointers and the copy constructor

Ling-Chieh Kung (NTU IM)Programming Design – Classes 22 / 52

Destructors

• A destructor is invoked right

before an object is destroyed.

– It must be public and

have no parameter.

– The compiler provides a

default destructor that

does nothing.

• To define your own
destructor, use ~.

– Typically we release

dynamically allocated

space in a destructor.

MyVector::MyVector

(int dim, int value)

{

n = dim;

m = new int[n];

for(int i = 0; i < n; i++)

m[i] = value;

}

int main()

{

if (true)

MyVector v1(1);

// no memory leak

return 0;

}

class MyVector

{

private:

int n;

int* m;

public:

// ...

~MyVector();

};

MyVector::

~MyVector()

{

delete [] m;

}

Basic concepts Constructors and the destructor

Friends and static members Object pointers and the copy constructor

Ling-Chieh Kung (NTU IM)Programming Design – Classes 23 / 52

Timing for constructors/destructors

• When a class has other classes as types of instance

variables, when are all the constructors/destructors

invoked?

class A

{

public:

A() { cout << "A\n"; }

~A() { cout << "a\n"; }

};

class B

{

private:

A a;

public:

B() { cout << "B\n"; }

~B() { cout << "b\n"; }

};

int main()

{

B b;

return 0;

}

Basic concepts Constructors and the destructor

Friends and static members Object pointers and the copy constructor

Ling-Chieh Kung (NTU IM)Programming Design – Classes 24 / 52

Outline

• Basic concepts

• Constructors and the destructor

• Friends and static members

• Objects pointers and the copy constructor

Basic concepts Constructors and the destructor

Friends and static members Object pointers and the copy constructor

Ling-Chieh Kung (NTU IM)Programming Design – Classes 25 / 52

Getters and setters

• In most cases, instance variables are private.

• For them to be accessed, sometimes people

implement getters and setters for them.

– A getter simply returns the value of a private

instance variable.

– A setter simply modifies a private instance

variables to a given value.

• What are the benefits and costs for having

getters and setters?

class MyVector

{

private:

int n;

int* m;

public:

// ...

int getN() { return n; }

void setN(int v) { n = v; }

};

Basic concepts Constructors and the destructor

Friends and static members Object pointers and the copy constructor

Ling-Chieh Kung (NTU IM)Programming Design – Classes 26 / 52

friend for functions and classes

• To “open” private members, another way is to declare “friends.”

• One class can allow its friends to access its private members.

• Its friends can be global functions or other classes.

– Then inside test() and member functions of Test,

those private members of MyVector can be accessed.

– MyVector cannot access Test’s members.

• A friend can be declared in either the public or private

section. It does not matter.

• A class must declare its friends by itself.

– One cannot declare itself as another one’s friend!

class MyVector

{

// ...

friend void test();

friend class Test;

};

Basic concepts Constructors and the destructor

Friends and static members Object pointers and the copy constructor

Ling-Chieh Kung (NTU IM)Programming Design – Classes 27 / 52

friend: an example

void test() {

MyVector v;

v.n = 100; // syntax error if not a friend

cout << v.n; // syntax error if not a friend

}

class Test {

public:

void test(MyVector v) {

v.n = 200; // syntax error if not a friend

cout << v.n; // syntax error if not a friend

}

};

Basic concepts Constructors and the destructor

Friends and static members Object pointers and the copy constructor

Ling-Chieh Kung (NTU IM)Programming Design – Classes 28 / 52

friend for functions and classes

• Declare friends only if data hiding is preserved.

– Do not set everything public!

– Use structures rather than classes when nothing should be private (this is

recommended but not required).

– Be careful in offering public member functions (e.g., getters and setters).

• friend in fact help you hide data.

– If a private member should be accessed only by another class/function, we

should declare a friend instead of writing a getter/setter.

Basic concepts Constructors and the destructor

Friends and static members Object pointers and the copy constructor

Ling-Chieh Kung (NTU IM)Programming Design – Classes 29 / 52

Static members

• A class contains some instance variables and functions.

– Each object has its own copy of instance variables and functions.

• A member variable/function may be an attribute/operation of a class.

– When the attribute/operation is class-specific rather than object-specific.

– A class-specific attribute/operation should be identical for all objects.

• These variables/functions are called static members.

Basic concepts Constructors and the destructor

Friends and static members Object pointers and the copy constructor

Ling-Chieh Kung (NTU IM)Programming Design – Classes 30 / 52

• In MS Windows, each window is

an object.

– Windows is written in C++.

– Mac OS is written in

Objective-C.

• Each window has some object-

specific attributes.

• They also share one class-specific

attribute: the color of their title

bars.

Static members: an example

class Window

{

private:

int width;

int height;

int locationX;

int locationY;

int status; // 0: min, 1: usual, 2: max

static int barColor; // 0: gray, ...

// ...

public:

static int getBarColor();

static void setBarColor(int color);

// ...

};

Basic concepts Constructors and the destructor

Friends and static members Object pointers and the copy constructor

Ling-Chieh Kung (NTU IM)Programming Design – Classes 31 / 52

Static members: an example

• We have to initialize a static

variable globally.

• To access static members, use
class name::member name.

int main()

{

Window w; // not used

cout << Window::getBarColor();

cout << "\n";

Window::setBarColor(1);

return 0;

}

int Window::barColor = 0; // default

int Window::getBarColor()

{

return barColor;

}

void Window::setBarColor(int color)

{

barColor = color;

}

Basic concepts Constructors and the destructor

Friends and static members Object pointers and the copy constructor

Ling-Chieh Kung (NTU IM)Programming Design – Classes 32 / 52

Static members

• Recall that we have four types of members:

– Instance variables and instance functions.

– Static variables and static functions.

• Some rules regarding static members:

– We may access a static member inside an instance function.

– We cannot access an instance member inside a static function.

– Though not suggested, we may access a static member through an object.

Window w;

cout << w.getBarColor() << "\n";

Basic concepts Constructors and the destructor

Friends and static members Object pointers and the copy constructor

Ling-Chieh Kung (NTU IM)Programming Design – Classes 33 / 52

Good programming style

• If one attribute should be identical for all objects, it should be declared as a

static variable.

– Do not make it an instance variable and try to maintain consistency.

• Do not use an object to invoke a static member.

– This will confuse the reader.

• Use class name::member name even inside member function definition

to show that it is a static member.

int Window::getBarColor()

{

return Window::barColor;

}

Basic concepts Constructors and the destructor

Friends and static members Object pointers and the copy constructor

Ling-Chieh Kung (NTU IM)Programming Design – Classes 34 / 52

Another way of using static members

• One may use a static global variable to count the number of times a global

function is invoked.

• One may use a static member variable to count for how many times an object

is created.

class A

{

private:

static int count;

public:

A() { A::count++; }

static int getCount()

{ return A::count; }

};

int A::count = 0;

int main()

{

A a1, a2, a3;

cout << A::getCount() << "\n"; // 3

return 0;

}

Basic concepts Constructors and the destructor

Friends and static members Object pointers and the copy constructor

Ling-Chieh Kung (NTU IM)Programming Design – Classes 35 / 52

Another way of using static members

• With the help of the destructor, we may keep a record on the number of active

(alive) objects.

class A

{

private:

static int count;

public:

A() { A::count++; }

~A() { A::count--; }

static int getCount()

{ return A::count; }

};

int A::count = 0;

int main()

{

if(true)

A a1, a2, a3;

cout << A::getCount() << "\n"; // 0

return 0;

}

Basic concepts Constructors and the destructor

Friends and static members Object pointers and the copy constructor

Ling-Chieh Kung (NTU IM)Programming Design – Classes 36 / 52

Outline

• Basic concepts

• Constructors and the destructor

• Friends and static members

• Object pointers and the copy constructor

Basic concepts Constructors and the destructor

Friends and static members Object pointers and the copy constructor

Ling-Chieh Kung (NTU IM)Programming Design – Classes 37 / 52

Object pointers

• A class is a (self-defined) data type.

• A pointer may point to any data type.

– A pointer may point to an object, i.e., store the address of an object.

• For example:

int main()

{

MyVector v(5);

MyVector* ptrV = &v; // object pointer

return 0;

}

Basic concepts Constructors and the destructor

Friends and static members Object pointers and the copy constructor

Ling-Chieh Kung (NTU IM)Programming Design – Classes 38 / 52

Object pointers

• What we have done is to use an object to invoke instance functions.

– E.g., a.print()where a is an object and print() is an instance function.

• If we have a pointer ptrA pointing to the object a, we may write

(*ptrA).print() to invoke the instance function print().

– *ptrA returns the object a.

• To simplify this, C++ offers the member access
operator ->.

– This is specifically for an object pointer to access

its members.

– (*ptrA).print() is equivalent to

ptrA->print().

int main()

{

MyVector v(5);

MyVector* ptrV = &v;

v.print();

ptrV->print();

return 0;

}

Basic concepts Constructors and the destructor

Friends and static members Object pointers and the copy constructor

Ling-Chieh Kung (NTU IM)Programming Design – Classes 39 / 52

Why object pointers?

• Object pointers can be more useful than pointers for basic data types. Why?

• When one creates an array of objects, only the default constructor may be

invoked.

– Creating an array of object pointers delays the invocation of constructors.

– These pointers than point to dynamically allocated objects.

• Passing a pointer into a function can be more efficient than passing the object.

– A pointer can be much smaller than an object.

– Copying a pointer is easier than copying an object.

• Other reasons will be discussed in other lectures.

Basic concepts Constructors and the destructor

Friends and static members Object pointers and the copy constructor

Ling-Chieh Kung (NTU IM)Programming Design – Classes 40 / 52

• We may also create object arrays.

– The default constructor will be invoked.

– There is no way to invoke other constructors.

– We must implement other functions to assign proper values to instance

variables.

Static object arrays

int main()

{

MyVector v[3]; // an object array

v[0].print(); // run-time error!

return 0;

}

Basic concepts Constructors and the destructor

Friends and static members Object pointers and the copy constructor

Ling-Chieh Kung (NTU IM)Programming Design – Classes 41 / 52

• Object pointers allow us to do dynamic

memory allocation.

• Object pointers allow us to create

dynamic arrays.

Dynamic object arrays

int main()

{

MyVector* ptrV = new MyVector(5);

ptrV->print();

delete ptrV;

return 0;

}

int main()

{

MyVector* ptrV = new MyVector[5];

ptrV[0].print(); // run-time error

delete [] ptrV;

return 0;

}

Basic concepts Constructors and the destructor

Friends and static members Object pointers and the copy constructor

Ling-Chieh Kung (NTU IM)Programming Design – Classes 42 / 52

Object pointer arrays

• To delay the invocation of constructors, we create an object pointer array.

– Each pointer then points to a dynamic object.

Basic concepts Constructors and the destructor

Friends and static members Object pointers and the copy constructor

int main()

{

MyVector* ptrArray[5]; // no constructor invocation

for(int i = 0; i < 5; i++)

ptrArray[i] = new MyVector(i + 1); // constructor

ptrArray[0]->print(); // (0)

// some delete statements

return 0;

}

Ling-Chieh Kung (NTU IM)Programming Design – Classes 43 / 52

Passing objects into a function

• Consider a function that takes three vectors and returns their sum.

– We need to create four MyVector objects in this function.

MyVector sum

(MyVector v1, MyVector v2, MyVector v3)

{

// assume that their dimensions are identical

int n = v1.getN();

int* sov = new int[n];

for(int i = 0; i < n; i++)

sov[i] = v1.getM(i) + v2.getM(i) + v3.getM(i);

MyVector sumOfVec(n, sov);

return sumOfVec;

}

int MyVector::getN()

{ return n; }

int MyVector::getM(int i)

{ return m[i]; }

MyVector::MyVector

(int d, int v[])

{

n = d;

for(int i = 0; i < n; i++)

m[i] = v[i];

}

Basic concepts Constructors and the destructor

Friends and static members Object pointers and the copy constructor

Ling-Chieh Kung (NTU IM)Programming Design – Classes 44 / 52

Passing object pointers into a function

• We may pass pointers rather than objects into this function:

– We need to create only one MyVector object in this function.

– Nevertheless, using pointers to access members requires more time.

MyVector sum(MyVector* v1, MyVector* v2, MyVector* v3)

{

// assume that their dimensions are identical

int n = v1->getN();

int* sov = new int[n];

for(int i = 0; i < n; i++)

sov[i] = v1->getM(i) + v2->getM(i) + v3->getM(i);

MyVector sumOfVec(n, sov);

return sumOfVec;

}

Basic concepts Constructors and the destructor

Friends and static members Object pointers and the copy constructor

Ling-Chieh Kung (NTU IM)Programming Design – Classes 45 / 52

Passing object references

• We may also pass references:

– We create only one MyVector object in this function.

MyVector sum(MyVector& v1, MyVector& v2, MyVector& v3)

{

// assume that their dimensions are identical

int n = v1.getN();

int* sov = new int[n];

for(int i = 0; i < n; i++)

sov[i] = v1.getM(i) + v2.getM(i) + v3.getM(i);

MyVector sumOfVec(n, sov);

return sumOfVec;

}

Basic concepts Constructors and the destructor

Friends and static members Object pointers and the copy constructor

Ling-Chieh Kung (NTU IM)Programming Design – Classes 46 / 52

Constant references

• While we may want to pass references to save time, we need to protect our

arguments from being modified.

– Save time while being safe!

• Should we do the same thing when passing object pointers?

MyVector sum

(const MyVector& v1, const MyVector& v2, const MyVector& v3)

{

// ...

}

Basic concepts Constructors and the destructor

Friends and static members Object pointers and the copy constructor

Ling-Chieh Kung (NTU IM)Programming Design – Classes 47 / 52

Copying an object

• Consider the following program:

• Why just one “A” when invoking f()?

class A

{

private:

int i;

public:

A() { cout << "A"; }

};

void f(A a1, A a2, A a3)

{

A a4;

}

int main()

{

A a1, a2, a3; // AAA

cout << "\n===\n";

f(a1, a2, a3); // A

return 0;

}

Basic concepts Constructors and the destructor

Friends and static members Object pointers and the copy constructor

Ling-Chieh Kung (NTU IM)Programming Design – Classes 48 / 52

Copying an object

• In general, when we pass by value, a local variable will be created.

– When we pass by value for an object, a local object is created.

– The constructor should be invoked.

– So why just one “A” when invoking f()?

• How about this?

– No constructor is invoked when a4 is created?
int main()

{

A a1, a2, a3; // AAA

cout << "\n===\n";

A a4 = a1; // nothing!

return 0;

}

Basic concepts Constructors and the destructor

Friends and static members Object pointers and the copy constructor

Ling-Chieh Kung (NTU IM)Programming Design – Classes 49 / 52

Copying an object

• Creating an object by “copying” an object is a special operation.

– When we pass an object into a function using the

call-by-value mechanism.

– When we assign an object to another object.

– When we create an object with another object as the

argument of the constructor.

• When this happens, the copy constructor will be invoked.

– If the programmer does not define one, the compiler adds a default copy

constructor (which of course does not print out anything) into the class.

– The default copy constructor simply copies all member variables one by one,

regardless of the variable types.

f(a1, a2, a3);

A a4 = a1;

A a5(a1);

Basic concepts Constructors and the destructor

Friends and static members Object pointers and the copy constructor

Ling-Chieh Kung (NTU IM)Programming Design – Classes 50 / 52

Copy constructors

• We may implement our own copy constructor.

– In the C++ standard, the parameter must be a constant reference.

– If calling by value, it will invoke itself infinitely many times.

class A

{

private:

int i;

public:

A() { cout << "A"; }

A(const A& a) { cout << "a"; }

};

void f(A a1, A a2, A a3)

{

A a4;

}

int main()

{

A a1, a2, a3; // AAA

cout << "\n===\n";

f(a1, a2, a3); // aaaA

return 0;

}

Basic concepts Constructors and the destructor

Friends and static members Object pointers and the copy constructor

Ling-Chieh Kung (NTU IM)Programming Design – Classes 51 / 52

Copy constructors for MyVector

• For MyVector, one way to implement a

copy constructor is

– This has nothing different from the

default copy constructor.

– If no member is an array/pointer,

the default copy constructor is fine.

• If there is any array or pointer member

variable, the default copy constructor does

“shallow copy”.

– And two different vectors may share

the same space for values.

– Modifying one vector affects the other!

MyVector::MyVector

(const MyVector& v)

{

n = v.n;

m = v.m;

}

int main()

{

MyVector v1(5, 1);

MyVector v2(v1); // what is bad?

}

Basic concepts Constructors and the destructor

Friends and static members Object pointers and the copy constructor

Ling-Chieh Kung (NTU IM)Programming Design – Classes 52 / 52

Deep copy

• To correctly copy a vector (by creating new values), we need to write our own

copy constructor.

• We say that we implement “deep copy” by ourselves.

– In the self-defined copy constructor, we manually create another dynamic

array, set its elements’ values according to the original array, and use m to

record its address.

MyVector::MyVector(const MyVector& v)

{

n = v.n;

m = new int[n]; // deep copy

for(int i = 0; i < n; i++)

m[i] = v.m[i];

}

Basic concepts Constructors and the destructor

Friends and static members Object pointers and the copy constructor

