
Ling-Chieh Kung (NTU IM)Programming Design – File I/O and Header Files 1 / 47

Programming Design

File I/O and Header Files

Ling-Chieh Kung

Department of Information Management

National Taiwan University

File I/O Self-defined header files

Ling-Chieh Kung (NTU IM)Programming Design – File I/O and Header Files 2 / 47

Applications of classes

• Let’s study an applications of classes.

– File input/output.

• Let’s also study a better way of managing a program (with classes).

– Self-defined header files.

File I/O Self-defined header files

Ling-Chieh Kung (NTU IM)Programming Design – File I/O and Header Files 3 / 47

Outline

• C++ Strings

• File I/O

• Self-defined header files

File I/O Self-defined header files

Ling-Chieh Kung (NTU IM)Programming Design – File I/O and Header Files 4 / 47

File I/O

• The von Neumann

architecture:

• With the techniques

of file input/output

(file I/O), we will

read data from and

store data to files in the hard discs.

– So that the results can still be kept after the program terminates.

• We will focus on plain-text files.

– Those files that can be directly edited with Notepad on MS Windows.

Input
CPU

Memory
Output

Storage

File I/O Self-defined header files

Ling-Chieh Kung (NTU IM)Programming Design – File I/O and Header Files 5 / 47

A plain-text file

• Files store data.

– A plain-text file stores characters.

– A MS Word document stores characters and format information.

– A bitmap file stores color codes.

• How are characters stored in a plain-text files?

– Each character has its own position.

– For each opened file, there is a

position pointer indicating the

current reading/writing position.

– To control the reading/writing operations, we control the position pointer.

a b c d e f g

0 1 2 3 4 5 6

File I/O Self-defined header files

Ling-Chieh Kung (NTU IM)Programming Design – File I/O and Header Files 6 / 47

Writing to a file

• The first character is stored at position 0.

• In general, once a character is written to a file:

– The character replaces the old character at the current position.

– The position pointer moves to the next position (from i to i + 1).

• When a character n is written to this file:

a b c d e f g

0 1 2 3 4 5 6

a b c n e f g

0 1 2 3 4 5 6

File I/O Self-defined header files

Ling-Chieh Kung (NTU IM)Programming Design – File I/O and Header Files 7 / 47

File streams

• In C++, input and output activities are managed in streams.

– E.g., data may flow from cin or into cout.

• To replace the console and keyboard by files, in C++ we create ifstream and

ofstream objects.

• ifstream and ofstream are classes defined in <fstream>.

– They can be used to create input/output file stream objects.

– Simply imagine those objects as source/target files!

File I/O Self-defined header files

Ling-Chieh Kung (NTU IM)Programming Design – File I/O and Header Files 8 / 47

Output file streams

• To open and close an output file stream:

– open() and close() are public member functions.

– file name can be a C or C++ string.

• Thanks to encapsulation, we do not care about:

– Whether there is a member variables storing the file name.

– How open() and close() are implemented.

ofstream file object;

file object.open(file name);

// ...

file object.close();

ofstream myFile;

myFile.open("temp.txt");

// ...

myFile.close();

File I/O Self-defined header files

Ling-Chieh Kung (NTU IM)Programming Design – File I/O and Header Files 9 / 47

Writing to an output file stream

• To write to an output file stream, we may use <<.

– << has been overloaded for the class ofstream.

– It returns ofstream& for concatenated output streams.

• What if we replace myFile by cout in the third statement?

• The second argument of << can be of any basic data type.

– What if we want to put a MyVector object as the second argument?

ofstream myFile;

myFile.open("temp.txt");

myFile << "1 abc\n &%^ " << 123.45;

myFile.close();

File I/O Self-defined header files

Ling-Chieh Kung (NTU IM)Programming Design – File I/O and Header Files 10 / 47

Options for an output file stream

• An open mode can be set when we open an output file stream.

– ios::out (default): The window starts at location 0; remove existing data.

– ios::app: The window starts at the end; never modify existing data.

– ios::ate: The window starts at the end; can modify existing data.

• ios is a class; out, app, and ate are public static variables.

ofstream file object;

file object.open(file name, option);

// ...

file object.close();

File I/O Self-defined header files

Ling-Chieh Kung (NTU IM)Programming Design – File I/O and Header Files 11 / 47

Constructors and other members

• The class ofstream also provides constructors:

– Regardless of the extension name, we are creating/opening a plain text file.

• ofstream provides other member functions.

– E.g., put(char c)writes the character c into the file.

ofstream file object(file name, option); ofstream file object(file name);

ofstream myFile("temp.txt");

myFile << "1 abc\n &%^ " << 123.45;

myFile.close();

File I/O Self-defined header files

Ling-Chieh Kung (NTU IM)Programming Design – File I/O and Header Files 12 / 47

Example

– !scoreFile returns true if the file is not created successfully.

• What will happen if we replace scoreFile by cout?

#include <iostream>

#include <fstream>

#include <cstdlib>

using namespace std;

int main()

{

ofstream scoreFile

("temp.txt", ios::out);

char name[20] = {0};

int score = 0;

char notFin = 0;

bool con = true;

if(!scoreFile)

exit(1);

while(con)

{

cin >> name >> score;

scoreFile << name << " " << score << "\n";

cout << "Continue (Y/N)? ";

cin >> notFin;

con = ((notFin == 'Y') ? true : false);

}

scoreFile.close();

return 0;

}

File I/O Self-defined header files

Ling-Chieh Kung (NTU IM)Programming Design – File I/O and Header Files 13 / 47

Input file streams

• To read data from a file, we create an input file stream.

• We create an ifstream object.

• The only open mode we will use for ifstream is iso::in (default).

• Again, we may use if(!myFile) to check whether a file is really opened.

– If the file does not exist, myFile returns false.

ifstream file object;

file object.open(file name);

// ...

file object.close();

ifstream myFile;

myFile.open("temp.txt");

// ...

myFile.close();

File I/O Self-defined header files

Ling-Chieh Kung (NTU IM)Programming Design – File I/O and Header Files 14 / 47

Reading from an input file stream

• If the input data file is well-formatted, we may use the operator >>.

– Like most of the testing input data for your Homework.

– Those files that you may predict the type of the next piece of data.

• For example, suppose we have a file containing names and grades:

– In each line, there is a name and one score (an integer).

– Of course, they are separated by white spaces.

• How to calculate the average grades?

• How to find the one with the highest grades?

• How to generate a frequency distribution?

Tony 100

Alex 98

Robin 95

John 90

Mary 100

Bob 80

File I/O Self-defined header files

Ling-Chieh Kung (NTU IM)Programming Design – File I/O and Header Files 15 / 47

Reading from an input file stream

• >> reads data between two spaces (or tabs or new line characters)

and tries to convert that piece of data into the specified type.

#include <iostream>

#include <fstream>

#include <string>

using namespace std;

int main()

{

ifstream inFile("score.txt");

if(inFile)

{

string name;

int score = 0;

int sumScore = 0;

int scoreCount = 0;

while(inFile >> name >> score)

{

sumScore += score;

scoreCount++;

}

if(scoreCount != 0)

cout << static_cast<double>(sumScore)

/ scoreCount;

else

cout << "no grade!";

}

inFile.close();

return 0;

}

Tony 100

Alex 98

Robin 95

John 90

Mary 100

Bob 80

File I/O Self-defined header files

Ling-Chieh Kung (NTU IM)Programming Design – File I/O and Header Files 16 / 47

End of file

• In each file, there is a special character “end of file”.

– In C++, it is represented by the variable EOF.

– It is always at the end of a file.

• When we do inFile >> name >> score:
Tony 100

Alex 98

T o n y 1 0 0 \n A l e x 9 8 EOF

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

File I/O Self-defined header files

Ling-Chieh Kung (NTU IM)Programming Design – File I/O and Header Files 17 / 47

End of file

• In each file, there is a special character “end of file”.

– In C++, it is represented by the variable EOF.

– It is always at the end of a file.

• When we do inFile >> name >> score:
Tony 100

Alex 98

T o n y 1 0 0 \n A l e x 9 8 EOF

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

File I/O Self-defined header files

Ling-Chieh Kung (NTU IM)Programming Design – File I/O and Header Files 18 / 47

End of file

• In each file, there is a special character “end of file”.

– In C++, it is represented by the variable EOF.

– It is always at the end of a file.

• When we do inFile >> name >> score:
Tony 100

Alex 98

T o n y 1 0 0 \n A l e x 9 8 EOF

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

File I/O Self-defined header files

Ling-Chieh Kung (NTU IM)Programming Design – File I/O and Header Files 19 / 47

End of file

• In each file, there is a special character “end of file”.

– In C++, it is represented by the variable EOF.

– It is always at the end of a file.

• When we do inFile >> name >> score:
Tony 100

Alex 98

T o n y 1 0 0 \n A l e x 9 8 EOF

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

File I/O Self-defined header files

Ling-Chieh Kung (NTU IM)Programming Design – File I/O and Header Files 20 / 47

End of file

• In each file, there is a special character “end of file”.

– In C++, it is represented by the variable EOF.

– It is always at the end of a file.

• When we do inFile >> name >> score:
Tony 100

Alex 98

T o n y 1 0 0 \n A l e x 9 8 EOF

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

File I/O Self-defined header files

Ling-Chieh Kung (NTU IM)Programming Design – File I/O and Header Files 21 / 47

End of file

• In each file, there is a special character “end of file”.

– In C++, it is represented by the variable EOF.

– It is always at the end of a file.

• When we do inFile >> name >> score:

• An input operation (e.g., inFile >> name) returns false if it reads EOF.

Tony 100

Alex 98

T o n y 1 0 0 \n A l e x 9 8 EOF

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

File I/O Self-defined header files

Ling-Chieh Kung (NTU IM)Programming Design – File I/O and Header Files 22 / 47

End of file

• To verify that the current position is at the white space after a >> operation:

#include <iostream>

#include <fstream>

#include <string>

using namespace std;

int main()

{

ifstream inFile("test.txt");

string name;

char c = 0;

if(inFile)

{

inFile >> name;

c = inFile.get();

cout << c << "-"; // -

c = inFile.get();

cout << c << "-"; // 1-

}

inFile.close();

return 0;

}

File I/O Self-defined header files

Ling-Chieh Kung (NTU IM)Programming Design – File I/O and Header Files 23 / 47

Reading from an input file stream

• Let’s modify the while loop:

– The member function eof() returns

true if the window is at EOF.

while(!inFile.eof())

{

inFile >> name;

inFile >> score;

sumScore += score;

scoreCount++;

}

File I/O Self-defined header files

Ling-Chieh Kung (NTU IM)Programming Design – File I/O and Header Files 24 / 47

Unformatted input files

• Sometimes a data file is not perfectly formatted.

– We cannot predict what the next type will be.

– For example, when there are missing values.

• In this case, we read data as characters and then manually

find the types.

– This process is called parsing.

• Some member functions of the class ifstream:

– get() reads one character and returns it.

– getline() reads multiple characters into a character array.

Tony 100

Alex 98

Robin

John 90

Mary 100

Bob 80

File I/O Self-defined header files

Ling-Chieh Kung (NTU IM)Programming Design – File I/O and Header Files 25 / 47

get() and getline()

• Let’s use get():

• Let’s use getline():

while(!inFile.eof())

{

char c = inFile.get();

cout << c;

}

while(!inFile.eof())

{

char name[20];

inFile.getline(name, 20);

cout << name << endl;

}

File I/O Self-defined header files

Ling-Chieh Kung (NTU IM)Programming Design – File I/O and Header Files 26 / 47

getline() in a smarter way

• Let’s use getline()with a delimiter:

• getline() stops when the delimiter is read.

– It must be a character.

– It will be read and discarded.

char name[20];

inFile.getline(name, 20, ' ');

cout << name << endl;

inFile.getline(n, 100, ' ');

c = inFile.get();

cout << c << "-"; // 1-

c = inFile.get();

cout << c << "-"; // 0-

T o n y 1 0 0 \n A l e x 9 8 EOF

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

File I/O Self-defined header files

Ling-Chieh Kung (NTU IM)Programming Design – File I/O and Header Files 27 / 47

getline() in a smarter way

• Let’s use getline()with a delimiter:

• getline() stops when the delimiter is read.

– It must be a character.

– It will be read and discarded.

char name[20];

inFile.getline(name, 20, ' ');

cout << name << endl;

inFile.getline(n, 100, ' ');

c = inFile.get();

cout << c << "-"; // 1-

c = inFile.get();

cout << c << "-"; // 0-

T o n y 1 0 0 \n A l e x 9 8 EOF

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

File I/O Self-defined header files

Ling-Chieh Kung (NTU IM)Programming Design – File I/O and Header Files 28 / 47

getline() for C++ strings

• Determining the types and preparing a large enough buffer are always issues.

– C++ strings may help.

• In particular, we may use the global function getline() in <string>.

– The delimiter is also read and discarded.

• As an example:

istream& getline(istream& is, string& str, char delim);

while(!inFile.eof())

{

string name;

getline(inFile, name, ' ');

cout << name << endl;

}

File I/O Self-defined header files

Ling-Chieh Kung (NTU IM)Programming Design – File I/O and Header Files 29 / 47

Updating a file

• How to update “Alex” to “Alexander”?

– The member function seekp()moves the window.

– What should we do when we are at ‘A’?

• Updating a file typically requires copy-and-paste.

– Because plain text files are sequential-access files.

• The easiest way may be to read from the file, do modifications, and then write

to a completely new file!

Tony 100

Alex 98

Robin 95

John 90

Mary 100

Bob 80

File I/O Self-defined header files

Ling-Chieh Kung (NTU IM)Programming Design – File I/O and Header Files 30 / 47

if(inFile && outFile)

{

while(inFile >> name >> score)

{

if(name == "Alex")

name = "Alexander";

outFile << name << " "

<< score << endl;

}

}

inFile.close();

outFile.close();

return 0;

}

Updating a file

Tony 100

Alex 98

Robin 95

John 90

Mary 100

Bob 80

#include <iostream>

#include <fstream>

#include <string>

using namespace std;

int main()

{

ifstream inFile("test.txt");

ofstream outFile("test1.txt");

string name;

int score;

File I/O Self-defined header files

Ling-Chieh Kung (NTU IM)Programming Design – File I/O and Header Files 31 / 47

>> vs. getline()

• The two operations are similar but different:

– >> tries to convert the piece into the specified type; getline() simply store

that piece as a C or C++ string.

– >> stops at the first character not of that type; getline() stops at one

character after the delimiter.

• Suppose that the text file now may contain the first name and last name of a

student, separated by a white space.

– We use a colon to separate a name and a score.

• How to write a program to calculate the sum of scores?

Tony Wang: 100

Alex Chao: 98

Robin Chen: 95

Lin: 90

Mary: 100

Bob Tsai: 80

File I/O Self-defined header files

Ling-Chieh Kung (NTU IM)Programming Design – File I/O and Header Files 32 / 47

if(inFile)

{

while(!inFile.eof())

{

getline(inFile, name, ':');

inFile >> score;

sumScore += score;

} // good!

cout << sumScore << endl;

}

inFile.close();

return 0;

}

>> vs. getline()

Tony Wang: 100

Alex Chao: 98

Robin Chen: 95

Lin: 90

Mary: 100

Bob Tsai: 80

#include <iostream>

#include <fstream>

#include <string>

using namespace std;

int main()

{

ifstream inFile("score.txt");

string name;

int score = 0;

int sumScore = 0;

File I/O Self-defined header files

Ling-Chieh Kung (NTU IM)Programming Design – File I/O and Header Files 33 / 47

if(inFile)

{

while(!inFile.eof())

{

getline(inFile, name);

inFile >> score;

sumScore += score;

} // bad! Why?!?!

cout << sumScore << endl;

}

inFile.close();

return 0;

}

>> vs. getline()

Tony Wang

100

Alex Chao

98

Robin Chen

95

Lin

90

Mary

100

Bob Tsai

80

#include <iostream>

#include <fstream>

#include <string>

using namespace std;

int main()

{

ifstream inFile("score.txt");

string name;

int score = 0;

int sumScore = 0;

File I/O Self-defined header files

Ling-Chieh Kung (NTU IM)Programming Design – File I/O and Header Files 34 / 47

>> vs. getline()

• >> stops at the first character not of that type.

• After the inFile >> score operation, the input cursor stops at

the newline character.

• The next getline(inFile, name) operation reads only the

newline character into name.

– The cursor gets to ‘A’ in the third line.

• The next inFile >> score operation then fails to convert

“Alex” into an integer.

• To fix this problem, we need to manually bypass the newline

character.

– The member function ignore() ignores one character.

Tony Wang

100

Alex Chao

98

Robin Chen

95

Lin

90

Mary

100

Bob Tsai

80

File I/O Self-defined header files

Ling-Chieh Kung (NTU IM)Programming Design – File I/O and Header Files 35 / 47

if(inFile)

{

while(!inFile.eof())

{

getline(inFile, name);

inFile >> score;

inFile.ignore();

sumScore += score;

} // good!

cout << sumScore << endl;

}

inFile.close();

return 0;

}

>> vs. getline()

Tony Wang

100

Alex Chao

98

Robin Chen

95

Lin

90

Mary

100

Bob Tsai

80

#include <iostream>

#include <fstream>

#include <string>

using namespace std;

int main()

{

ifstream inFile("score.txt");

string name;

int score = 0;

int sumScore = 0;

File I/O Self-defined header files

Ling-Chieh Kung (NTU IM)Programming Design – File I/O and Header Files 36 / 47

if(inFile)

{

while(!inFile.eof())

{

getline(inFile, name);

getline(inFile, scoreStr);

score = stoi(scoreStr);

sumScore += score;

} // good!

cout << sumScore << endl;

}

inFile.close();

return 0;

}

An alternative way

Tony Wang

100

Alex Chao

98

Robin Chen

95

Lin

90

Mary

100

Bob Tsai

80

#include <iostream>

#include <fstream>

#include <string>

using namespace std;

int main()

{

ifstream inFile("score.txt");

string name;

string scoreStr;

int score = 0;

int sumScore = 0;

File I/O Self-defined header files

Ling-Chieh Kung (NTU IM)Programming Design – File I/O and Header Files 37 / 47

Outline

• C++ Strings

• File I/O

• Self-defined header files

File I/O Self-defined header files

Ling-Chieh Kung (NTU IM)Programming Design – File I/O and Header Files 38 / 47

Libraries

• There are many C++ standard libraries.

– <iostream>, <fstream>, <cmath>, <cctype>, <string>, etc.

• We may also want to define our own libraries.

– Especially when we collaborate with others.

– Typically, one implements classes or global functions for the others to use.

– That function can be defined in a self-defined library.

• A library includes a header file (.h) and a source file (.cpp).

– The header file contains declarations

– The source file contains definitions.

File I/O Self-defined header files

Ling-Chieh Kung (NTU IM)Programming Design – File I/O and Header Files 39 / 47

Example

• Consider the following program with a single function myMax():

• Let’s define a constant variable for the array length in a header file.

#include <iostream>

using namespace std;

int myMax(int [], int);

int main()

{

int a[5] = {7, 2, 5, 8, 9};

cout << myMax(a, 5);

return 0;

}

int myMax(int a[], int len)

{

int max = a[0];

for(int i = 1; i < len; i++)

{

if(a[i] > max)

max = a[i];

}

return max;

}

File I/O Self-defined header files

Ling-Chieh Kung (NTU IM)Programming Design – File I/O and Header Files 40 / 47

Defining variables in a library

myMax.h

main.cpp

const int LEN = 5;

#include <iostream>

#include "myMax.h"

using namespace std;

int myMax(int [], int);

int main()

{

int a[LEN] = {7, 2, 5, 8, 9};

cout << myMax (a, LEN);

return 0;

}

int myMax(int a[], int len)

{

int max = a[0];

for(int i = 1; i < len; i++)

{

if(a[i] > max)

max = a[i];

}

return max;

}

File I/O Self-defined header files

Ling-Chieh Kung (NTU IM)Programming Design – File I/O and Header Files 41 / 47

Including a header file

• When your main program wants to include a self-defined header file, simply
indicate its path and file name.

– #include "myMax.h"

– #include "D:/test/myMax.h"

– #include "lib/myMax.h"

– Using \ or / does not matter (on Windows).

• We still compile the main program as usual.

• Let’s also define functions in our library!

– Now we need a source file.

File I/O Self-defined header files

Ling-Chieh Kung (NTU IM)Programming Design – File I/O and Header Files 42 / 47

Defining functions in a library

myMax.h myMax.cpp

main.cpp

const int LEN = 5;

int myMax(int [], int);

#include <iostream>

#include "myMax.h"

using namespace std;

int main()

{

int a[LEN] = {7, 2, 5, 8, 9};

cout << myMax(a, LEN);

return 0;

}

int myMax(int a[], int len)

{

int max = a[0];

for(int i = 1; i < len; i++)

{

if(a[i] > max)

max = a[i];

}

return max;

}

File I/O Self-defined header files

Ling-Chieh Kung (NTU IM)Programming Design – File I/O and Header Files 43 / 47

Including a header and a source file

• When your main program also wants to include a self-defined source file, the
include statement needs not be changed.

– #include "myMax.h"

• We add a source file myMax.cpp.

– In the source file, we implement those functions declared in the header file.

– The main file names of the header and source files can be different.

• The two source files (main.cpp and myMax.cpp) must be compiled together.

– Each environment has its own way.

File I/O Self-defined header files

Ling-Chieh Kung (NTU IM)Programming Design – File I/O and Header Files 44 / 47

Defining one more function

myMax.h myMax.cpp

main.cpp

const int LEN = 5;

int myMax (int [], int);

void print(int);

#include <iostream>

#include "myMax.h"

using namespace std;

int main()

{

int a[LEN] = {7, 2, 5, 8, 9};

print(myMax(a, LEN));

return 0;

}

int myMax(int a[], int len)

{

int max = a[0];

for(int i = 1; i < len; i++)

{

if(a[i] > max)

max = a[i];

}

return max;

}

void print(int i)

{

cout << i; // cout undefined!

}

File I/O Self-defined header files

Ling-Chieh Kung (NTU IM)Programming Design – File I/O and Header Files 45 / 47

Defining one more function

• Each source file contains statements to run.

• Each source file must include the libraries it
needs for its statements.

#include <iostream>

using namespace std;

int myMax(int a[], int len)

{

int max = a[0];

for(int i = 1; i < len; i++)

{

if(a[i] > max)

max = a[i];

}

return max;

}

void print(int i)

{

cout << i; // good!

}

File I/O Self-defined header files

Ling-Chieh Kung (NTU IM)Programming Design – File I/O and Header Files 46 / 47

The complete set of files

myMax.h myMax.cpp

main.cpp

const int LEN = 5;

int myMax(int [], int);

void print(int);

#include <iostream>

#include "myMax.h"

using namespace std;

int main()

{

int a[LEN] = {7, 2, 5, 8, 9};

print(myMax (a, LEN));

return 0;

}

#include <iostream>

using namespace std;

int myMax(int a[], int len)

{

int max = a[0];

for(int i = 1; i < len; i++)

{

if(a[i] > max)

max = a[i];

}

return max;

}

void print(int i)

{

cout << i;

}

File I/O Self-defined header files

Ling-Chieh Kung (NTU IM)Programming Design – File I/O and Header Files 47 / 47

Remarks

• In many cases, myMax.cpp also include
myMax.h.

– E.g., if LEN is accessed in
myMax.cpp.

• More will be discussed in further
courses (e.g., Data Structures).

– More than two source files.

– A header file including another
header file.

main.cpp

myMax.cpp myMax.h

C++

Standard

Libraries

File I/O Self-defined header files

