
Ling-Chieh Kung (NTU IM)Programming Design – Advanced Topics 1 / 56

Programming Design

Advanced Topics

Ling-Chieh Kung

Department of Information Management

National Taiwan University

Ling-Chieh Kung (NTU IM)Programming Design – Advanced Topics 2 / 56

Road map

• Python

• C++ vs. Python

• The power of data structures

Ling-Chieh Kung (NTU IM)Programming Design – Advanced Topics 3 / 56

C++ vs. Python

• In this course, we study the C++ programming language.

– It is a compiled language.

– It is a statically typed language.

• Basically this is why C++, C, Java, etc., are “fast.”

– Let’s feel how fast C++ is by comparing it to Python.

• Python is one of the most popular language nowadays.

– It is an interpreted language.

– It is a dynamically typed language.

– It is great for beginner; it is great for writing “small” programs.

– However, it can be “slow.”

Ling-Chieh Kung (NTU IM)Programming Design – Advanced Topics 4 / 56

Python

• Python was invented by Guido van Rossum around

1996: “Over six years ago, in December 1989, I

was looking for a "hobby" programming project

that would keep me occupied during the week

around Christmas.”

– The latest version (in August, 2017) is 3.6.2.

• Python is very good for beginners.

– It is simple.

– It is easy to start.

– It is powerful.

(https://en.wikipedia.org/wiki/

Python_(programming_language)

Ling-Chieh Kung (NTU IM)Programming Design – Advanced Topics 5 / 56

How to run Python

• To taste Python online:

– https://www.python.org/ or other similar

websites.

• To get the Python interpreter:

– Go to https://www.python.org/downloads/, download, double click, and then

click and then click… and then you are done.

https://www.python.org/
https://www.python.org/downloads/

Ling-Chieh Kung (NTU IM)Programming Design – Advanced Topics 6 / 56

Interpreting a program

• An interpreter translates programs into assembly programs.

– For other high-level programs (including C, C++, Java,

etc.), a compiler is used.

– Python uses an interpreter.

• An interpreter interpret a program line by line.

• We may write Python in the interactive mode.

– Input one line of program, then see the result.

– Input the next line, then see the next result.

– The statements should be entered after the prompt.

Ling-Chieh Kung (NTU IM)Programming Design – Advanced Topics 7 / 56

Interpreting a program

• We may also write Python in

the script mode.

– Write several lines in a file

(with the extension file

name .py), and then

interpret all the lines one

by one at a single

execution.

• A programming language

using an interpreter is also

called a scripting language.

– E.g., R.

Ling-Chieh Kung (NTU IM)Programming Design – Advanced Topics 8 / 56

How to run Python

• To try the interactive mode:

– Open your console (the command line environment) and type python to

initiate the interactive mode.

– You may need to set up your “PATH” variables.

• To write Python on an editor and interpret a script with the interpreter:

– Open a good text editor (e.g., Notepad++), write a script, save it (.py).

– Open the console, locate your script file (.py), interpret it with the
instruction python, and see the result.

(Figure 1.1, Think Python)

Ling-Chieh Kung (NTU IM)Programming Design – Advanced Topics 9 / 56

Let write Python!

• Let’s “learn Python in ten minutes.”

– https://www.stavros.io/tutorials/

python/

– https://www.youtube.com/watch

?v=a5Y3e9aqMg8

– https://leanpub.com/learn-

python/read

https://www.stavros.io/tutorials/python/
https://www.youtube.com/watch?v=a5Y3e9aqMg8
https://leanpub.com/learn-python/read

Ling-Chieh Kung (NTU IM)Programming Design – Advanced Topics 10 / 56

Let’s write Python: “Hello world!”

• Recall our first C++ program:

#include <iostream>

using namespace std;

int main()

{

cout << "Hello World! \n";

return 0;

}

• In python:

• So easy!

print("Hello World!")

Ling-Chieh Kung (NTU IM)Programming Design – Advanced Topics 11 / 56

Let’s write Python: input and sum

• Recall our second C++ program: • In python:

• No need to declare a variable.

– No need to specify a type.

– But still can do casting.

#include <iostream>

using namespace std;

int main()

{

int num1 = 0, num2 = 0;

cin >> num1 >> num2;

cout << "The sum is "

<< num1 + num2;

return 0;

}

num1 = int(input())

num2 = int(input())

print("The sum is",

num1 + num2)

Ling-Chieh Kung (NTU IM)Programming Design – Advanced Topics 12 / 56

Let’s write Python: if and while

• Recall our third C++ program: • In python:

• No semicolon.

– Python uses line breaks to

separate statements.

– Python uses indentions to

determine blocks.

num1 = int(input())

num2 = int(input())

while num1 > num2:

print("number 1 is", num1)

num1 = num1 - 1

#include <iostream>

using namespace std;

int main()

{

int num1 = 0, num2 = 0;

cin >> num1 >> num2;

while(num1 > num2)

{

cout << "number 1 is "

<< num1 << "\n";

num1 = num1 - 1;

}

return 0;

}

Ling-Chieh Kung (NTU IM)Programming Design – Advanced Topics 13 / 56

Let’s write Python: array, list, function

• In C++, we may create static or dynamic arrays:

int main()

{

int r = 3;

int** array = new int*[r];

for(int i = 0; i < r; i++) {

array[i] = new int[i + 1];

for(int j = 0; j <= i; j++)

array[i][j] = j + 1;

}

print(array, r);

for(int i = 0; i < r; i++)

delete [] array[i];

delete [] array;

return 0;

}

#include <iostream>

using namespace std;

int print(int** arr, int r)

{

for(int i = 0; i < r; i++)

{

for(int j = 0; j <= i; j++)

cout << arr[i][j] << " ";

cout << "\n";

}

}

Ling-Chieh Kung (NTU IM)Programming Design – Advanced Topics 14 / 56

Let’s write Python: array, list, function

• In Python, we use lists:

• def defines a function.

– range(r) creates a list of

integers 0, 1, …, r – 1.

• All function parameters are not declared with types.

r = 3

array = []

for i in range(r):

array.append([])

for j in range(i + 1):

array[i].append(j + 1)

printList(array, r)

print(array)

def printList(arr, r):

for i in range(r):

for j in range(i + 1):

print(arr[i][j], end = " ")

print()

Ling-Chieh Kung (NTU IM)Programming Design – Advanced Topics 15 / 56

Let’s write Python: bubble sort

• Recall our bubble sort in C++:

void bubbleSort(const int unsorted[], int sorted[], int len)

{

for(int i = 0; i < len; i++)

sorted[i] = unsorted[i];

for(int i = len - 1; i > 0; i--) {

for(int j = 0; j < i; j++) {

if(sorted[j] > sorted[j + 1]) {

int temp = sorted[j];

sorted[j] = sorted[j + 1];

sorted[j + 1] = temp;

}

}

}

}

Ling-Chieh Kung (NTU IM)Programming Design – Advanced Topics 16 / 56

Let’s write Python: bubble sort

• In Python:

• range(len - 1, 0 -1) creates a list len – 1, len – 2, …, 1.

def bubbleSort(unsorted, sorted, len):

for i in range(len):

sorted[i] = unsorted[i]

for i in range(len - 1, 0, -1):

for j in range(i):

if sorted[j] > sorted[j + 1]:

temp = sorted[j]

sorted[j] = sorted[j + 1]

sorted[j + 1] = temp

Ling-Chieh Kung (NTU IM)Programming Design – Advanced Topics 17 / 56

Good!

• Now you know two programming languages!

• You may learn more by yourself in the future.

– As long as you want.

– As long as you have Internet access.

– As long as you have a solid foundation.

• But do not get confused by the word “language”…

Ling-Chieh Kung (NTU IM)Programming Design – Advanced Topics 18 / 56

A little joke

• 作者 XXXXX (只願上天的成全) 看板 NTUIM-11

標題 請問
時間 Tue Nov 5 22:54:40 2002

──────────────────────────────

想要買本資料結構的書來看

不知道那一種板本寫的比較詳細

或是那一種板[本的書比較容易懂的

知道的人可以回一下嗎?

Ling-Chieh Kung (NTU IM)Programming Design – Advanced Topics 19 / 56

A little joke

• 作者 rrro (小傑) 看板 NTUIM-11

標題 Re: 請問
時間 Wed Nov 6 08:03:37 2002

──────────────────────────────

※ 引述《gentle (只願上天的成全)》之銘言：
: 想要買本資料結構的書來看
: 不知道那一種板本寫的比較詳細
: 或是那一種板[本的書比較容易懂的
: 知道的人可以回一下嗎?

你要用什麼語言的啊？

Ling-Chieh Kung (NTU IM)Programming Design – Advanced Topics 20 / 56

A little joke

• 作者 XXXXX (只願上天的成全) 看板 NTUIM-11

標題 Re: 請問
時間 Wed Nov 6 22:17:33 2002

─────────────────────────────

※ 引述《rrro (小傑)》之銘言：
: ※ 引述《gentle (只願上天的成全)》之銘言：
: : 想要買本資料結構的書來看
: : 不知道那一種板本寫的比較詳細
: : 或是那一種板[本的書比較容易懂的
: : 知道的人可以回一下嗎?

: 你要用什麼語言的啊？

中文的~

謝謝

Ling-Chieh Kung (NTU IM)Programming Design – Advanced Topics 21 / 56

Road map

• Python

• C++ vs. Python

• The power of data structures

Ling-Chieh Kung (NTU IM)Programming Design – Advanced Topics 22 / 56

C++ vs. Python

• Let’s use C++ and Python as examples to compare:

– Compilation and interpretation.

– Static typing and week typing.

– Without and with initial values.

– “Old” and “new” languages.

Ling-Chieh Kung (NTU IM)Programming Design – Advanced Topics 23 / 56

Compilation and interpretation

• To write a program in a compiled language, the whole

program must be compiled before an executable file is

generated.

– There should be no syntax error in the whole program.

– There is a program; there is an executable file.

• To write a program in an interpreted language, each line

of code may be interpreted by itself.

– That statement must have no syntax error; syntax errors

in later statements do not matter (at least in the

interactive mode).

– There can be no program; there is no executable file.

Ling-Chieh Kung (NTU IM)Programming Design – Advanced Topics 24 / 56

Compilation and interpretation

• Executing an executable file is typically faster than interpreting and running an

interpreted program.

• However, developing a program in an interpreted language is typically faster.

– We may just write a small piece and then test it.

• A good combination:

– Design a way to solve your problem.

– Write a program in an interpreted language to validate your solution.

– After you confirm the effectiveness of your solution, write a program in a

compiled language (if needed) to generate an executable file. Run the

executable file in the future.

Ling-Chieh Kung (NTU IM)Programming Design – Advanced Topics 25 / 56

Static typing and dynamic typing

• Static typing means the types of variables must be

determined during the compilation time.

– In C++, we declare variables by specifying types.

– A variable’s type does not change during the run

time (though its value’s type may change).

• Dynamic typing means variable types will be

determined during the run time.

– In Python, we do not declare a variable’s type.

– A variable’s type will change during the run time

(depending on the type of the value assigned to it).

• They are also called strong typing and weak typing.

r = 3

array = [4, 1, 3]

print(type(r))

print(type(array))

array = 1.4

r = "this is a string"

print(type(r))

print(type(array))

Ling-Chieh Kung (NTU IM)Programming Design – Advanced Topics 26 / 56

Static typing and dynamic typing

• A program written with static typing typically runs faster.

– No need to change a variable’s type during the run time.

• Developing a program with static typing may take more time.

– Need a clear understanding about types and casting.

– Typically more syntax errors; may have fewer run-time errors.

Ling-Chieh Kung (NTU IM)Programming Design – Advanced Topics 27 / 56

Initial values

• In C++, a newly declared variable (typically) does not get its

initial value automatically.

– The programmer must assign an initial value to the

variable manually.

– This is called initialization.

• In Python, a new variable (typically) gets an initial value

automatically.

– In fact, because there is no need to “declare a variable,”

almost always we assign a value to a variable when

creating it.

• Running a C++ program will take more time if C++ assigns

initial values to all variables..

a = int()

b = float()

c = ""

d = list()

print(a, b, c, d)

Ling-Chieh Kung (NTU IM)Programming Design – Advanced Topics 28 / 56

A numerical experiment

• Let’s do a numerical experiment to test the speeds of C++ and Python.

– We use C++ and Python to implement the same algorithms “bubble sort”

and “insertion sort.”

– We then use each implementation to sort 2000, 4000, 6000, …, or 20000

randomly generated integers.

– For each scenario (number of integers), we run each implementation and

record the time.

• Ideally, we should include multiple (say, 50) instances in each scenario for us to

calculate an average across all instances. For simplicity, below we will generate

only one instance for each scenario.

Ling-Chieh Kung (NTU IM)Programming Design – Advanced Topics 29 / 56

C++ implementations: two functions

void insertionSort(const int unsorted[],

int sorted[], int len)

{

for(int i = 0; i < len; i++)

sorted[i] = unsorted[i];

for(int i = 0; i < len; i++) {

for(int j = i; j > 0; j--) {

if(sorted[j] < sorted[j - 1]) {

int temp = sorted[j];

sorted[j] = sorted[j - 1];

sorted[j - 1] = temp;

}

else

break;

}

}

}

void bubbleSort(const int unsorted[],

int sorted[], int len)

{

for(int i = 0; i < len; i++)

sorted[i] = unsorted[i];

for(int i = len - 1; i > 0; i--) {

for(int j = 0; j < i; j++) {

if(sorted[j] > sorted[j + 1]) {

int temp = sorted[j];

sorted[j] = sorted[j + 1];

sorted[j + 1] = temp;

}

}

}

}

Ling-Chieh Kung (NTU IM)Programming Design – Advanced Topics 30 / 56

C++ implementations: time counting

#include <iostream>

#include <cstdlib>

#include <ctime>

using namespace std;

const int LEN_BASE = 2000;

const int MAX = 10000;

void bubbleSort(const int unsorted[], int sorted[], int len);

void insertionSort(const int unsorted[], int sorted[], int len);

void setRN(int rn[], int len) {

srand(time(nullptr));

for(int i = 0; i < len; i++)

rn[i] = rand() % MAX;

}

// continue to the next page

Ling-Chieh Kung (NTU IM)Programming Design – Advanced Topics 31 / 56

C++ implementations: time counting

int main()

{

cout << "n Bubble Insertion\n";

for(int expSeq = 0; expSeq < 10; expSeq++)

{

const int LEN = LEN_BASE * (expSeq + 1);

int* rn = new int[LEN];

int* sorted = new int[LEN];

setRN(rn, LEN);

cout << LEN << " ";

// continue to the next page

Ling-Chieh Kung (NTU IM)Programming Design – Advanced Topics 32 / 56

C++ implementations: time counting

clock_t startTime = clock();

bubbleSort(rn, sorted, LEN);

clock_t endTime = clock();

cout << static_cast<float>(endTime - startTime) / CLOCKS_PER_SEC << " ";

startTime = clock();

insertionSort(rn, sorted, LEN);

endTime = clock();

cout << static_cast<float>(endTime - startTime) / CLOCKS_PER_SEC << "\n";

delete [] sorted;

delete [] rn;

}

return 0;

}

Ling-Chieh Kung (NTU IM)Programming Design – Advanced Topics 33 / 56

Python implementations: two functions

def insertionSort(unsorted, sorted, len):

for i in range(len):

sorted[i] = unsorted[i]

for i in range(len):

for j in range(i, 0, -1):

if sorted[j] < sorted[j - 1]:

temp = sorted[j]

sorted[j] = sorted[j - 1]

sorted[j - 1] = temp

else:

break

def bubbleSort(unsorted, sorted, len):

for i in range(len):

sorted[i] = unsorted[i]

for i in range(len - 1, 0, -1):

for j in range(i):

if sorted[j] > sorted[j + 1]:

temp = sorted[j]

sorted[j] = sorted[j + 1]

sorted[j + 1] = temp

Ling-Chieh Kung (NTU IM)Programming Design – Advanced Topics 34 / 56

Python implementations: time counting

import random

import time

LEN = 10000;

MAX = 10000;

BIN_CNT = 10;

def setRN(rn, len):

for i in range(LEN):

rn[i] = random.randrange(32767) % MAX

LEN_BASE = 2000

print("n Bubble Insertion")

continue to the next page

Ling-Chieh Kung (NTU IM)Programming Design – Advanced Topics 35 / 56

Python implementations: time counting

for expSeq in range(10):

LEN = LEN_BASE * (expSeq + 1)

rn = [0] * LEN

sorted = [0] * LEN

setRN(rn, LEN)

print(LEN, end = " ")

startTime = time.clock()

bubbleSort(rn, sorted, LEN)

endTime = time.clock()

print(round((endTime - startTime) * 1000) / 1000, end = " ")

startTime = time.clock()

insertionSort(rn, sorted, LEN)

endTime = time.clock()

print(round((endTime - startTime) * 1000) / 1000)

Ling-Chieh Kung (NTU IM)Programming Design – Advanced Topics 36 / 56

Comparisons

Number of

integers

Python

Bubble

Python

Insertion

C++

Bubble

C++

Insertion

Ratio

Bubble

Ratio

Insertion

2000 0.470 0.339 0.013 0.004 36.15 84.75

4000 1.826 1.375 0.051 0.017 35.80 80.88

6000 4.162 3.106 0.113 0.038 36.83 81.74

8000 7.345 5.460 0.201 0.075 36.54 72.80

10000 11.598 8.750 0.317 0.126 36.59 69.44

12000 16.983 12.460 0.471 0.150 36.06 83.07

14000 22.787 19.960 0.632 0.208 36.06 95.96

16000 29.864 22.385 0.820 0.267 36.42 83.84

18000 38.174 28.737 1.010 0.348 37.80 82.58

20000 47.573 35.245 1.438 0.419 33.08 84.12

Ling-Chieh Kung (NTU IM)Programming Design – Advanced Topics 37 / 56

Comparisons

• C++ is indeed (much) faster!

Ling-Chieh Kung (NTU IM)Programming Design – Advanced Topics 38 / 56

“Old” and “new” languages

• C++ is older than Python.

• A new language typically has better design.

– E.g., Indention vs. curly brackets.

• Nevertheless, both languages are still evolving.

Ling-Chieh Kung (NTU IM)Programming Design – Advanced Topics 39 / 56

Road map

• Python

• C++ vs. Python

• The power of data structures

Ling-Chieh Kung (NTU IM)Programming Design – Advanced Topics 40 / 56

The power of data structures

• In the next semester, you will take the course “Data Structures and Advanced

Programming.”

– To better manage and protect your data.

– To improve the efficiency of your program.

– To allow a higher complexity of your system.

• We already see some different data structures:

– E.g., an adjacency matrix and an adjacency list.

• To motivate your study in the next semester, let’s use one example to illustrate

the power of data structures.

Ling-Chieh Kung (NTU IM)Programming Design – Advanced Topics 41 / 56

Case study: makespan minimization

• 𝑛 jobs should be allocated to 𝑚 machines. It takes 𝑝𝑗 hours to complete job 𝑗.

– 𝑝𝑗 is called the processing time of job 𝑗.

• When a machine is allocated several jobs, its completion time is the sum of all

processing times of allocated jobs.

• We want to minimize the completion time of the machine whose completion

time is the latest.

– This is called “makespan” in the subject of scheduling.

– The problem is called “makespan minimization among identical machines.”

Ling-Chieh Kung (NTU IM)Programming Design – Advanced Topics 42 / 56

Heuristics for makespan minimization

• Makespan minimization among identical machines is NP-hard.

• Two well-known heuristic algorithms were proposed by Graham (1966, 1969).

– Both algorithms are iterative and greedy.

• Algorithm 1:

– Let the jobs be ordered in any way.

– In each iteration, assign the next job to the machine that is currently having

the earliest completion time.

• Algorithm 2 (longest processing time first, LPT):

– Let the jobs be ordered in the descending order of processing times.

– In each iteration, assign the next job to the machine that is currently having

the earliest completion time.

Ling-Chieh Kung (NTU IM)Programming Design – Advanced Topics 43 / 56

Examples

• Suppose that we have ten jobs and three machines.

– Processing times are 9, 4, 7, 1, 6, 3, 5, 4, 3, and 8.

• Algorithm 1:

– Machine 1: 9, 5, 8 (total: 22).

– Machine 2: 4, 1, 6, 3 (total: 14).

– Machine 3: 7, 3, 4 (total: 14).

• Algorithm 2 (LPT):

– Machine 1: 9, 4, 4 (total: 17).

– Machine 2: 8, 5, 3, 1 (total: 17).

– Machine 3: 7, 6, 3 (total: 16).

• For this example, LPT happens to find an optimal solution.

Ling-Chieh Kung (NTU IM)Programming Design – Advanced Topics 44 / 56

Worst-case performance guarantees

• While the two algorithms are simple, they also possess a great theoretical

property: their worst-case performance is guaranteed.

• Let 𝑃 be a minimization problem, 𝐼 be an instance of 𝑃.

– “Makespan minimization among identical machines” is a problem.

– 𝑛 = 10, 𝑚 = 3, and 𝑝 = (9, 4, 7, 1, 6, 3, 5, 4, 3, 8) define an instance.

• For an instance 𝐼:

– Let 𝑧OPT(𝐼) be the objective value of an optimal solution.

– Let 𝑧ALG(𝐼) be the objective value of a solution obtained by the algorithm.

Ling-Chieh Kung (NTU IM)Programming Design – Advanced Topics 45 / 56

Worst-case performance guarantees

• An algorithm is a factor-𝛼 approximation algorithm if

𝑧ALG(𝐼)

𝑧OPT(𝐼)
≤ 𝛼 for all 𝐼.

– 𝛼 is called the approximation factor of the algorithm.

– This must be true for all possible instances, including the weirdest instance

in the world.

• For the two heuristic algorithms:

– Algorithm 1 is a factor-2 approximation algorithm.

– Algorithm 2 (LPT) is a factor-
4

3
approximation algorithm.

– The proofs are beyond the scope of this course.

Ling-Chieh Kung (NTU IM)Programming Design – Advanced Topics 46 / 56

Time complexity

• Having a worst-case performance guarantee is great, but how about worst-case

time complexity?

• Algorithm 1:

– Let the jobs be ordered in any way: do nothing.

– In each iteration, assign the next job to the machine that is currently having

the earliest completion time.

• Algorithm 2 (LPT):

– Sort jobs in the descending order of processing times: 𝑶(𝒏 𝐥𝐨𝐠𝒏).

– In each iteration, assign the next job to the machine that is currently having

the earliest completion time.

• Let’s analyze the common step.

Ling-Chieh Kung (NTU IM)Programming Design – Advanced Topics 47 / 56

Time complexity: the common step

• The pseudocode:

• Method A: sort all completion times to find a smallest one.

– Sorting: 𝑂(𝑚 log𝑚). The whole step: 𝑂(𝑛𝑚 log𝑚).

• Method B: do a linear search to find a smallest one.

– Sorting: 𝑂(𝑚). The whole step: 𝑂(𝑛𝑚).

• May we do better?

Let 𝑝 be a vector of processing times of the 𝑛 jobs.
Initialize 𝐶𝑖 to 0 for all 𝑖 = 1,… ,𝑚. // accumulated completion times
for j from 1 to n

Find 𝑖∗ such that 𝐶𝑖∗ ≤ 𝐶𝑖 for all 𝑖 = 1, … ,𝑚. // how to implement?
Assign job 𝑗 to machine 𝑖∗; update 𝐶𝑖∗ to 𝐶𝑖∗ + 𝑝𝑗 .

Ling-Chieh Kung (NTU IM)Programming Design – Advanced Topics 48 / 56

A min heap: preparation

• To further improve our algorithm, we introduce a data structure called heap.

– There are min heaps and max heaps. Below we will introduce min heaps.

Max heaps may be defined and used in a similar way.

• Let’s start with a tree.

– A tree is a graph with no cycle.

– In a tree, we may specify a node

to be the root and some nodes to

be leafs. Others are internal nodes.

– The root is at level 0; the root’s

neighbors are at level 1; the

neighbors of the root’s neighbors

are at level 2, etc.

Level 0

Level 1

Level 2

Level 3

Root

Leaf

Leaf

Leaf

Leaf

Ling-Chieh Kung (NTU IM)Programming Design – Advanced Topics 49 / 56

A min heap: preparation

• For two nodes are levels 𝑘 and 𝑘 + 1, the one at level

𝑘 is the parent and that at level 𝑘 + 1 is the child.

• A binary tree is a tree in which each node has at most

two children.

– Level 𝑘 has at most 2𝑘 nodes.

• A binary tree is complete if the existence of a level-𝑘
node implies that there are 2𝑘−1 nodes in level 𝑘 − 1.

• For a complete binary tree, we may label each node

level by level, from left to right.

– Nodes in level 𝑘 are labeled from 2𝑘 to 2𝑘+1 − 1.

• A complete binary tree of 𝑛 nodes has 𝐥𝐨𝐠𝒏 levels.

1

2 3

4 5 6

A binary tree

A complete binary tree

Ling-Chieh Kung (NTU IM)Programming Design – Advanced Topics 50 / 56

A min heap

• A min heap is a complete binary tree where a parent is no greater than any of

its children.

• For each subtree, the root contains the minimum value in the subtree.

– The root of the whole tree contains the minimum value in the tree.

– There is no restriction on values in different subtrees.

1

3 2

4 7 9

1

2 8

4 3 9

Ling-Chieh Kung (NTU IM)Programming Design – Advanced Topics 51 / 56

A min heap for completion times

• Now, let’s put the 𝑚 completion times into a min heap.

• Find the minimum completion time is simple: Just look at the root.

• We then update that completion time by adding a job’s processing time to it.

– How to update the tree to make it still a min heap?

1

2 5

4 7 9

Ling-Chieh Kung (NTU IM)Programming Design – Advanced Topics 52 / 56

Keeping the tree as a min heap

• Suppose that we add 2 into the minimum completion time. 1 becomes 3.

– We then exchange 3 with 2, the smaller one of its children.

– The resulting tree then becomes a min heap.

• Why exchanging 3 with its smaller child?

3

2 5

4 7 9

2

3 5

4 7 9

Ling-Chieh Kung (NTU IM)Programming Design – Advanced Topics 53 / 56

Keeping the tree as a min heap

• Suppose that we add 5 into the minimum completion time. 1 becomes 6.

– We then exchange 6 with 2, the smaller one of its children.

– We keep doing so if needed.

• To do an adjustment, the maximum number of exchange is roughly 𝐥𝐨𝐠𝒎.

• Doing this 𝒏 times takes only 𝑶(𝒏 𝐥𝐨𝐠𝒎).

6

2 5

4 7 9

2

6 5

4 7 9

2

4 5

6 7 9

Ling-Chieh Kung (NTU IM)Programming Design – Advanced Topics 54 / 56

Implementing a min heap

• An 𝑛-nodes min heap may be easily implemented with a size-(𝑛 + 1) array.

– Intentionally leave the 0th element unused.

– Put the value in node 𝑖 in the 𝒊th element of the array.

• For node 𝑖, its children are nodes 𝟐𝒊 and 𝟐𝒊 + 𝟏.

– Just compare array[i]with array[2 * i] and array[2 * i + 1].

0 1 2 3 4 5 6

6 2 5 4 7 9

6

2 5

4 7 9

Ling-Chieh Kung (NTU IM)Programming Design – Advanced Topics 55 / 56

Time complexity: the common step

• One algorithm, three methods:

– Method A: sort to find a smallest one: 𝑂(𝑛𝑚 log𝑚).

– Method B: linear search to find a smallest one: 𝑂(𝑛𝑚).

– Method C: use a min heap to find a smallest one: 𝑂(𝑛 log𝑚).

• A and B are different in algorithms; B and C are different in data structures.

– Both B and C use a size-𝑂(𝑚) array. Only the way of storing values differ.

Let 𝑝 be a vector of processing times of the 𝑛 jobs.
Initialize 𝐶𝑖 to 0 for all 𝑖 = 1,… ,𝑚. // accumulated completion times
for j from 1 to n

Find 𝑖∗ such that 𝐶𝑖∗ ≤ 𝐶𝑖 for all 𝑖 = 1, … ,𝑚. // how to implement?
Assign job 𝑗 to machine 𝑖∗; update 𝐶𝑖∗ to 𝐶𝑖∗ + 𝑝𝑗 .

Ling-Chieh Kung (NTU IM)Programming Design – Advanced Topics 56 / 56

Conclusions

• Regarding time complexity:

– To complete a task, different algorithms may perform differently.

– To realize an algorithm, different data structures may perform differently.

• Data structures affect more than time complexity:

– Space complexity.

– Flexibility.

– Safety.

• This is why we need courses for data structures and algorithms!

