Programming Design

Algorithms and Recursion

Ling-Chieh Kung

Department of Information Management
National Taiwan University
Outline

• Algorithms and complexity
• Recursion
• Searching and sorting
Introduction

• It is said that:
 – Programming = Data structures + Algorithms.
 – To design a program, choose data structures to store your data and choose algorithms to process your data.
• Each of “data structures” and “algorithms” requires one (or more) courses.
 – We will only give you very basic ideas.
Algorithms

• Today we talk about *algorithms*, collections of steps for completing a task.
 – In general, an algorithm is used to *solve a problem*.
 – The most common strategy is to divide a problem into small pieces and then solve those *subproblems*.
 – We will introduce *recursion*, a way to solve a problem based on the solution/outcome of subproblems.

• For a problem, there may be multiple algorithms.
 – The first criterion, of course, is *correctness*.
 – *Time complexity* is typically the next for judging correct algorithms.

• As examples, we introduce two specific problems: *searching* and *sorting*.
Example: listing all prime numbers

- Given an integer \(n \), let’s list all the **prime numbers** no greater than \(n \).
- Consider the following (imprecise) algorithm:
 - For each number \(i \) no greater than \(n \), check whether it is a prime number.
- To check whether \(i \) is a prime number:
 - Idea: If any number \(j < i \) can divide \(i \), \(i \) is not a prime number.
 - Algorithm: For each number \(j < i \), check **whether \(j \) divides \(i \)**. If there is any \(j \) that divides \(i \), report no; otherwise, report yes.
- Before we write a program, we typically prefer to formalize our algorithm.
 - We write **pseudocodes**, a description of steps in words organized in a program structure.
 - This allows us to ignore the details of implementations.
Example: listing all prime numbers

- One pseudocode for listing all prime numbers no greater than n is:

 Given an integer n:

  ```
  for i from 2 to $n$
    assume that $i$ is a prime number
    for j from 2 to $i - 1$
      if $j$ divides $i$
        set $i$ to be a composite number
    if $i$ is still considered as prime
      print $i$
  ```

- Implementation:

  ```
  for(int i = 2; i <= n; i++) {
    bool isPrime = true;
    for(int j = 2; j < i; j++) {
      if(i % j == 0) {
        isPrime = false;
        break;
      }
    }
    if(isPrime == true)
      cout << i << " ";
  }
  ```

- Once we have described an algorithm in pseudocodes, implementation is easy.
A full implementation

- Let’s **modularize** our implementation:
 - `isPrime(int x)` determines whether the given integer x is a prime number.

```cpp
#include <iostream>
using namespace std;

bool isPrime(int x);

int main()
{
    int n = 0;
    cin >> n;
    for(int i = 2; i <= n; i++)
    {
        if(isPrime(i) == true)
            cout << i << " ";
    }
    return 0;
}
```

- Now we have a correct algorithm.
 - May we improve this algorithm?
Improving our algorithm

• The algorithm can be **faster**:

```cpp
bool isPrime(int x) {
    for(int i = 2; i * i <= x; i++)
        if(x % i == 0)
            return false;
    return true;
}
```

 – Do not use \(i \leq \sqrt{x}\) (why?).
 – We improved the algorithm, **not** the implementation.

• May we do even better?

```cpp
#include <iostream>
using namespace std;

bool isPrime(int x);  // corrected
int main()
{
    int n = 0;
    cin >> n;

    for(int i = 2; i <= n; i++)
    {
        if(isPrime(i) == true)
            cout << i << " ";
    }
    return 0;
}
```
Improving our algorithm further

- Let’s consider a completely different algorithm:
 - Let’s start from 2. Actually 2, 4, 6, 8, … are all composite numbers.
 - For 3, actually 3, 6, 9, … are all composite numbers.
 - We may use a **bottom-up approach** to eliminate composite numbers.

- The pseudocode (with comments):

```plaintext
Given a Boolean array $A$ of length $n$
Initialize all elements in $A$ to be `true` // assuming prime
for $i$ from 2 to $n$
  if $A_i$ is `true`
    print $i$
    for $j$ from 1 to $\lfloor n/i \rfloor$ // eliminating composite numbers
    Set $A[i \times j]$ to `false`
```
Improving our algorithm further

```cpp
#include <iostream>
using namespace std;

const int MAX_LEN = 10000;

void ruleOutPrime
  (int x, bool isPrime[], int n);

int main()
{
  int n = 0;
  cin >> n; // must < 10000
  bool isPrime[MAX_LEN] = {0};
  for(int i = 0; i < n; i++)
    isPrime[i] = true;

  for(int i = 2; i <= n; i++)
  {
    if(isPrime[i] == true)
    {
      cout << i << " ";
      ruleOutPrime(i, isPrime, n);
    }
  }
  return 0;
}

void ruleOutPrime
  (int x, bool isPrime[], int n)
{
  for(int i = 1; x * i < n; i++)
    isPrime[x * i] = false;
}
```
Complexity

- While all the three algorithms are correct, they are not equally efficient.
- We typically care about the **complexity** of an algorithm:
 - **Time complexity**: the running time of an algorithm.
 - **Space complexity**: the amount of spaces used by an algorithm.
 - Time is typically more critical.
- Algorithm 2 is much faster!
Complexity

• Running time may be affected by the hardware, number of programs running at the same time, etc.
 – The **number of basic operations** is a better measurement.
 – Basic operations include simple arithmetic, comparisons, etc.
• Convince yourself that algorithm 2 does fewer basic operations.
• The calculation of complexity needs training.
 – This will be formally introduced in Discrete Mathematics, Data Structures, and/or Algorithms.
Outline

- Algorithms and complexity
- **Recursion**
- Searching and sorting
Recursive functions

• A function is **recursive** if it invokes itself (directly or indirectly).
• The process of using recursive functions is called **recursion**.
• Why recursion?
 – Many problems can be solved by dividing the original problem into one or several smaller pieces of **subproblems**.
 – Typically subproblems are **quite similar** to the original problem.
 – With recursion, we write one function to solve the problem by using the **same function** to solve subproblems.
Example 1: finding the maximum

- Suppose that we want to find the maximum number in an array $A[1..n]$ (which means A is of size n).
 - Is there any subproblem whose solution can be utilized?
 - Subproblem: Finding the maximum in an array with size smaller than n.
- A strategy:
 - Subtask 1: First find the maximum of $A[1..(n - 1)]$.
 - Subtask 2: Then compare that with $A[n]$.
- How would you visualize this strategy?
- While subtask 2 is simple, subtask 1 is similar to the original task.
 - It can be solved with the same strategy!
Example 1: finding the maximum

- Let’s try to implement the strategy.
- First, I know I need to write a function whose header is:

  ```
  double max(double array[], int len);
  ```

 - This function returns the maximum in array (containing len elements).
 - I want this to happen, though at this moment I do not know how.

- Now let’s implement it:
 - If the function really works, subtask 1 can be completed by invoking

    ```
    double subMax = max(array, len - 1);
    ```

 - Subtask 2 is done by comparing subMax and array[len - 1].
Example 1: finding the maximum

- A (wrong) implementation:
- What will happen if we really invoke this function?
 - The program will not terminate!
 - Even when `len` is 1 in an invocation, we will still try to invoke `max(array, 0)`.
- For an array whose size is 1:
 - That number is the maximum!
- With this, we can add a stopping condition into our function.

```cpp
double max(double array[], int len)
{
    double subMax = max(array, len - 1);
    if(array[len - 1] > subMax)
        return array[len - 1];
    else
        return subMax;
}
int main()
{
    double a[5] = {5, 7, 2, 4, 3};
    cout << max(a, 5);
    return 0;
}
```
Example 1: finding the maximum

• A correct implementation is:
• What is the outcome?

```c++
int main()
{
   double a[5] = {5, 7, 2, 4, 3};
   cout << max(a, 5);
   return 0;
}
```

• Both `else` can be removed. Why?

```c++
double max(double array[], int len)
{
   if(len == 1) // stopping condition
       return array[0];
   else
   {
       // recursive call
       double subMax = max(array, len - 1);
       if (array[len - 1] > subMax)
           return array[len - 1];
       else
           return subMax;
   }
}
```
Example 1: finding the maximum

- Is it okay to remove both `else`? Why?

```c
double max(double array[], int len)
{
    if (len == 1) // stopping condition
        return array[0];
    else
    {
        // recursive call
        double subMax = max(array, len - 1);
        if(array[len - 1] > subMax)
            return array[len - 1];
        else
            return subMax;
    }
}
```
Example 2: computing factorials

- How to write a function that computes the factorial of \(n \)?
 - A subproblem: computing the factorial of \(n - 1 \).
 - A strategy: First calculate the factorial of \(n - 1 \), then multiply it with \(n \).

```c
int factorial(int n)
{
    if(n == 1) // stopping condition
        return 1;
    else
        // recursive call
        return factorial(n - 1) * n;
}
```
Example 2: computing factorials

- When we invoke this function with argument 4:
- \texttt{factorial}(4)

 \[
 = \texttt{factorial}(3) \times 4 \\
 = (\texttt{factorial}(2) \times 3) \times 4 \\
 = ((\texttt{factorial}(1) \times 2) \times 3) \times 4 \\
 = ((1 \times 2) \times 3) \times 4 \\
 = (2 \times 3) \times 4 \\
 = 6 \times 4 \\
 = 24
 \]
Example 3: the Fibonacci sequence

- Write a recursive function to find the nth Fibonacci number.
 - The Fibonacci sequence is 1, 1, 2, 3, 5, 8, 13, 21, …. Each number is the sum of the two proceeding numbers.
 - The nth value can be found once we know the $(n – 1)$th and $(n – 2)$th values.

```c
int fib(int n)
{
    if(n == 1)
        return 1;
    else if(n == 2)
        return 1;
    else // two recursive calls
        return (fib(n - 1) + fib(n - 2));
}
```
Some remarks

• There must be a **stopping condition** in a recursive function. Otherwise, the program will not terminate.

• In many cases, a recursive strategy can also be implemented with **loops**.
 – E.g., writing a loop for finding a maximum and factorial.
 – But sometimes it is hard to use loops to imitate a recursive function.

• Compared with an equivalent iterative function, a recursive implementation is usually **simpler** and **easier to understand**.

• However, it generally uses **more memory spaces** and is **more time-consuming**.
 – Invoking functions has some cost.
Complexity issue of recursion

• In some cases, recursion is efficient enough.
 – E.g., finding a maximum or calculating the factorial.
• In some cases, however, recursion can be very **inefficient**!
 – E.g., Fibonacci.
• Let’s compare the efficiency of two different implementations.
Complexity issue of recursion

- Two implementations:

```java
int fib(int n)
{
    if(n == 1)
        return 1;
    else if(n == 2)
        return 1;
    else // two recursive calls
        return (fib(n-1) + fib(n-2));
}
```

```java
double fibRepetitive(int n)
{
    if(n == 1 || n == 2)
        return 1;
    int fib1 = 1, fib2 = 1;
    int fib3 = 0;
    for(int i = 2; i < n; i++)
    {
        fib3 = fib1 + fib2;
        fib1 = fib2;
        fib2 = fib3;
    }
    return fib3;
}
```
Complexity issue of recursion

• Which one is faster?

```cpp
int main()
{
    int n = 0;
    cin >> n;
    cout << fibRepetitive(n) << "\n"; // algorithm 1
    cout << fib(n) << "\n"; // algorithm 2
    return 0;
}
```
Polynomial time vs. exponential time

- Given n:
 - The repetitive way has around c_1n steps, where $c_1 > 0$ is a constant.
 - The recursive way has around c_22^n steps, where $c_2 > 0$ is a constant.
- When n is large enough, c_22^n is much larger than c_1n.
 - Even if $c_1 << c_2$!
 - We say the repetitive way is more efficient.
- Technically, we say that:
 - The repetitive way is a polynomial-time algorithm
 - The recursive way is an exponential-time algorithm.
- In general, an exponential-time algorithm is just too inefficient.
Power of recursion

• Though recursion is sometimes inefficient, typically implementation is easier.
• Let’s consider the classic example “Hanoi Tower”.
 – There are three pillars and disks of different sizes which can slide onto any pillar. Disc i is smaller than disc j if $i < j$.
 – A large disc cannot be placed on top of a small disc.
• Initially, all discs are at pillar A. We want to move them to pillar C:
 – Only one disk can be moved at a time.
 – Each move consists of taking the upper disk from one of the stacks and placing it on top of another stack.
• What are the steps that solve the Hanoi Tower problem in the fastest way?
A recursive implementation

```cpp
void hanoi(char from, char via, char to, int disc)
{
    if(disc == 1)
        cout << "From " << from " to " << to "\n";
    else
    {
        hanoi(from, to, via, disc - 1);
        cout << "From " << from " to " << to "\n";
        hanoi(via, from, to, disc - 1);
    }
}

#include <iostream>
using namespace std;

int main()
{
    int disc = 0; // number of discs
    cin >> disc;
    char a = 'A', b = 'B', c = 'C';
    hanoi(a, b, c, disc);
    return 0;
}
```

• Is there a good way of solving the Hanoi Tower problem iteratively?
Outline

- Algorithms and complexity
- Recursion
- Searching and sorting
Searching

- One fundamental task in computation is to search for an element.
 - We want to determine whether an element exists in a set.
 - If yes, we want to locate that element.
 - E.g., looking for a string in an article.
- Here we will discuss how to search for an integer in an one-dimensional array.
- Whether the array is sorted makes a big difference.
Searching

- Consider an integer array $A[1..n]$ and an integer p.
- How to determine whether p exists in A?
- If so, where is it?
 - Assume that we only need to find one p even if there are multiple.
- Suppose that the array is unsorted.
- One of the most straightforward way is to apply a **linear search**.
 - Compare each element with p **one by one**, from the first to the last.
 - Whenever we find a match, report its location.
 - Conclude that p does not exist if we end up with nothing.
- The number of operations we need to execute is roughly proportional to n.
Binary search

• What if the array is sorted?
• We may still apply the linear search.
• However, we may improve the efficiency by implementing a binary search.
 – First, we compare \(p \) with the median \(m \) (e.g., \(A[(n + 1) / 2] \) if \(n \) is odd).
 – If \(p \) equals \(m \), bingo!
 – If \(p < m \), we know \(p \) must exist in the first half of \(A \) if it exists.
 – If \(p > m \), we know \(p \) must exist in the second half of \(A \) if it exists.
 – For the latter two cases, we will continue searching in the subarray.
Binary search: pseudocode

\[
\text{binarySearch}(a \text{ sorted array } A, \text{ search in between from and to, search for } p)
\]

\[
\text{if } n = 1
\]

\[
\text{return } \text{true if } A_{\text{from}} = p; \text{ return false otherwise}
\]

\[
\text{else}
\]

\[
\text{let median be floor}((\text{from } + \text{ to}) / 2)
\]

\[
\text{if } p = A_{\text{median}}
\]

\[
\text{return } \text{true}
\]

\[
\text{else if } p < A_{\text{median}}
\]

\[
\text{return binarySearch}(A, \text{ from, median, } p)
\]

\[
\text{else}
\]

\[
\text{return binarySearch}(A, \text{ median + 1, to, } p)
\]
Linear search vs. binary search

• In binary search, the number of instructions to be executed is roughly proportional to $\log_2 n$.
• So binary search is much more efficient than linear search!
 – The difference is huge is the array is large.
 – However, binary search is possible only if the array is sorted.
 – Is it worthwhile to sort an array before we search it?
• It is natural to implement binary search with recursion.
 – A subproblem is to search for the element in one half of the array.
• Binary search can also be implemented with repetition.
 – Is it natural to do so?
Sorting

- Given a one-dimensional integer array A of size n, how to sort it?
- Given numbers 6, 9, 3, 4, and 7, how would you sort them?
- Recall what you typically do when you play poker:
 - First put the first number 6 aside.
 - Compare the second number 9 with 6. Because $9 > 6$, put 9 to the right of 6.
 - Compare the third number 3 with the **sorted list** $(6, 9)$. Because $3 < 6$, put 3 to the left of 6.
 - Compare 4 with $(3, 6, 9)$. Because $3 < 4 < 6$, **insert** 4 in between 3 and 6.
 - Compare 7 with $(3, 4, 6, 9)$. Because $6 < 7 < 9$, insert 7 in between 6 and 9.
 - The result is $(3, 4, 6, 7, 9)$.
Insertion sort

• The above algorithm is called **insertion sort**.
 – The key is to maintain a sorted list.
 – Then for each number in the unsorted list, **insert** it into the proper location so that the sorted list **remains sorted**.

• How would you implement the insertion sort?
 – Recursion or repetition?
 – If recursion, what is your strategy?
(Non-repetitive) insertion sort

- The pseudocode:

```plaintext
insertionSort(a non-repetitive array A, the array length n, an index cutoff < n)
// at any time, A_1..cutoff is sorted and A_(cutoff + 1)..n is unsorted
if A_{cutoff + 1} < A_1..cutoff
    let p be 1
else
    find p such that A_{p - 1} < A_{cutoff + 1} < A_p
insert A_{cutoff + 1} to A_p and shift A_p..cutoff to A_(p + 1)..(cutoff + 1)
if cutoff + 1 < n
    insertionSort(A, n, cutoff + 1)
```

- What if A is repetitive?
Insertion sort

• Roughly how many instructions do we need for insertion sort?
 – We need to do \(n \) insertions.
 – To insert the \(k \)th value, we search for a position and shift some elements.
 • A linear search: at most \(k \) comparisons.
 • Shifting: at most \(k \) shifts.
 – Roughly we need \(1 + 2 + \cdots + n \) operations, which is proportional to \(n^2 \).
• Does binary search help?
Mergesort (Merge sort)

• Insertion sort is **simple** and fast!
 – Not really “fast”, but faster than many similar sorting algorithm.
 – Because its idea and implementation is simple, it is faster than most algorithms when the array size is **small**.
• Interestingly, there is another sorting algorithm:
 – Its idea is somewhat similar to insertion sort.
 – But it is significantly faster for large arrays!
• This algorithm is called **mergesort**.
Mergesort (Merge sort)

• Recall that in an insertion sort, we need to insert one number into a sorted list for many times.

• A key observation is that “inserting” another sorted list of size k into a sorted list can be faster than inserting k separate numbers one by one!
 – So such “inserting” is actually “merging”.

• Given an unsorted array, we will:
 – First split the array into two parts, the first half and second half.
 – Then sort each subarray.
 – Finally, merge these two subarrays.

• Mergesort is perfect for recursion!
Mergesort (Merge sort): pseudocode

```plaintext
mergeSort(an array A, the array length n)
    let median be floor((1 + n) / 2)
    mergeSort(A[1..median], median) // now A[1..median] is sorted
    mergeSort(A[(median + 1)..n], n - median + 1) // now A[(median + 1)..n] is sorted
    merge A[1..median] and A[(median + 1)..n] // how?
```
Mergesort (Merge sort)

- Interestingly, insertion sort is a special way of running mergesort.
 - Not splitting the array into two halves.
 - Instead, splitting it into $A[1..n - 1]$ and $A[n]$.
- Once we use the “smart split”, the efficiency is improved a lot!
 - Insertion sort: Roughly proportional to n^2.
 - Merge sort: Roughly proportional to $n \log n$.
- A simple observation can make a huge difference!