
Ling-Chieh Kung (NTU IM)Programming Design – Complexity and Graphs 1 / 54

Programming Design

Complexity and Graphs

Ling-Chieh Kung

Department of Information Management

National Taiwan University

Complexity The “big O” notation

Terminology of graphs Graph algorithms

Ling-Chieh Kung (NTU IM)Programming Design – Complexity and Graphs 2 / 54

Outline

• Complexity

• The “big O” notation

• Terminology of graphs

• Graph algorithms

Complexity The “big O” notation

Terminology of graphs Graph algorithms

Ling-Chieh Kung (NTU IM)Programming Design – Complexity and Graphs 3 / 54

Complexity

• Given a task, we design algorithms.

– These algorithms may all be correct.

– One algorithm may be better than another one.

– To compare algorithms, we compare their complexity.

• Time complexity and space complexity:

– Time: We hope an algorithm takes a short time to complete the task.

– Space: We hope an algorithm uses a small space to complete the task.

• Let’s see some examples.

Complexity The “big O” notation

Terminology of graphs Graph algorithms

Ling-Chieh Kung (NTU IM)Programming Design – Complexity and Graphs 4 / 54

Space complexity

• Given a matrix 𝐴 of 𝑚 × 𝑛 integers, find the row whose row sum is the largest.

• Two algorithms:

– For each row, find the sum. Store the 𝑚 row sums, scan through them, and

find the target row.

– For each row, find the sum and compare it with the currently largest row

sum. Update the currently largest row sum if it is larger.

Complexity The “big O” notation

Terminology of graphs Graph algorithms

Ling-Chieh Kung (NTU IM)Programming Design – Complexity and Graphs 5 / 54

Space complexity: algorithm 1

• Let’s implement algorithm 1:

const int MAX_COL_CNT = 3;

const int MAX_ROW_CNT = 4;

int maxRowSum(int A[][MAX_COL_CNT],

int m, int n)

{

// calculate row sums

int rowSum[MAX_ROW_CNT] = {0};

for(int i = 0; i < m; i++)

{

int aRowSum = 0;

for(int j = 0; j < n; j++)

aRowSum += A[i][j];

rowSum[i] = aRowSum;

}

// find the row with the max row sum

int maxRowSumValue = rowSum[0];

int maxRowNumber = 1;

for(int i = 0; i < m; i++)

{

if(rowSum[i] > maxRowSumValue)

{

maxRowSumValue = rowSum[i];

maxRowNumber = i + 1;

}

}

return maxRowNumber;

}

Complexity The “big O” notation

Terminology of graphs Graph algorithms

Ling-Chieh Kung (NTU IM)Programming Design – Complexity and Graphs 6 / 54

Space complexity: algorithm 2

• Let’s implement algorithm 2: int maxRowSum(int A[][MAX_COL_CNT],

int m, int n)

{

int maxRowSumValue = 0;

int maxRowNumber = 0;

for(int i = 0; i < m; i++)

{

int aRowSum = 0;

for(int j = 0; j < n; j++)

aRowSum += A[i][j];

if(aRowSum > maxRowSumValue)

{

maxRowSumValue = aRowSum;

maxRowNumber = i + 1;

}

}

return maxRowNumber;

}

Complexity The “big O” notation

Terminology of graphs Graph algorithms

Ling-Chieh Kung (NTU IM)Programming Design – Complexity and Graphs 7 / 54

Space complexity: comparison

• The two algorithms use different amounts of space:

– Algorithm 1: Declaring an array and three integers.

– Algorithm 2: Declaring three integers.

• Algorithm 2 has the lower space complexity.

Complexity The “big O” notation

Terminology of graphs Graph algorithms

Ling-Chieh Kung (NTU IM)Programming Design – Complexity and Graphs 8 / 54

Time complexity

• In general, people care more about time complexity.

– When we say “complexity,” we mean time complexity.

• Intuitively, the complexity of an algorithm can be measured by executing the

algorithm and counting the running time.

– Maybe you want to do this several times and calculate the average.

• However, we need to remove the impact of machine capability.

• We may count the number of basic operations instead.

– Basic operations: declaration, assignment, arithmetic, comparisons, etc.

Complexity The “big O” notation

Terminology of graphs Graph algorithms

Ling-Chieh Kung (NTU IM)Programming Design – Complexity and Graphs 9 / 54

Time complexity: example

• Consider the previous example.

• Let’s count the number of basic operations algorithm 1.

• For the first part of algorithm 1, we have 5𝑚𝑛 + 10𝑚 + 2 basic operations.

Decl. Assi. Arith. Comp.

(1) 𝑚 𝑚 0 0

(2) 1 𝑚 + 1 𝑚 𝑚

(3) 𝑚 𝑚 0 0

(4) 𝑚 𝑚(𝑛 + 1) 𝑚𝑛 𝑚𝑛

(5) 0 𝑚𝑛 𝑚𝑛 0

(6) 0 𝑚 0 0

int rowSum[MAX_ROW_CNT] = {0}; // (1)

for(int i = 0; i < m; i++) // (2)

{

int aRowSum = 0; // (3)

for(int j = 0; j < n; j++) // (4)

aRowSum += A[i][j]; // (5)

rowSum[i] = aRowSum; // (6)

}

// the remaining are skipped

Complexity The “big O” notation

Terminology of graphs Graph algorithms

Ling-Chieh Kung (NTU IM)Programming Design – Complexity and Graphs 10 / 54

Time complexity: principle

• Wait… this is so tedious! And there is no need to be that precise.

• Consider algorithm 1:

– 5𝑚𝑛 + 10𝑚 + 2 is roughly 5𝑚𝑛 if 𝑛 is large enough.

– The bottleneck is the first part (the second part has only one level of loop).

– The total number of operations is roughly 5𝑚𝑛.

• Moreover, that constant 5 does not mean a lot:

– It does not change when we get more integers (𝑚 or 𝑛 increases).

• As we care the complexity of an algorithm the most when the instance size is

large, we will ignore those constants and minor (non-bottleneck) parts.

– We only focus on how the number of operations grow at the bottleneck.

Complexity The “big O” notation

Terminology of graphs Graph algorithms

Ling-Chieh Kung (NTU IM)Programming Design – Complexity and Graphs 11 / 54

Time complexity: example

• Let’s analyze algorithm 2.

• The bottleneck is the two nested loops.

• The complexity is roughly 𝑚𝑛:

– This is how the execution time would

grow as the input size increases.

• To formalize the above idea, let’s

introduce the “big O” notation.

int maxRowSum(int A[][MAX_COL_CNT],

int m, int n)

{

int maxRowSumValue = 0;

int maxRowNumber = 0;

for(int i = 0; i < m; i++)

{

int aRowSum = 0;

for(int j = 0; j < n; j++)

aRowSum += A[i][j];

if(aRowSum > maxRowSumValue)

{

maxRowSumValue = aRowSum;

maxRowNumber = i + 1;

}

}

return maxRowNumber;

}

Complexity The “big O” notation

Terminology of graphs Graph algorithms

Ling-Chieh Kung (NTU IM)Programming Design – Complexity and Graphs 12 / 54

Outline

• Complexity

• The “big O” notation

• Terminology of graphs

• Graph algorithms

Complexity The “big O” notation

Terminology of graphs Graph algorithms

Ling-Chieh Kung (NTU IM)Programming Design – Complexity and Graphs 13 / 54

The “big O” notation

• Mathematically, let 𝑓 𝑛 ≥ 0 and 𝑔 𝑛 ≥ 0 be two functions defined for 𝑛 ∈ ℕ.

We say

𝒇 𝒏 ∈ 𝑶(𝒈 𝒏)

if and only if there exists a positive number 𝑐 and a number 𝑁 such that

𝒇 𝒏 ≤ 𝒄𝒈(𝒏)

for all 𝑛 ≥ 𝑁.

• Intuitively, that means when 𝒏 is large enough, 𝒈(𝒏) will dominate 𝒇(𝒏).

• If 𝑓 𝑛 is the number of operations that an algorithms takes to complete a task,

we say the algorithm’s time complexity is 𝑔(𝑛).

– We write 𝑓 𝑛 ∈ 𝑂(𝑔 𝑛), but some people write 𝑓 𝑛 = 𝑂(𝑔 𝑛).

Complexity The “big O” notation

Terminology of graphs Graph algorithms

Ling-Chieh Kung (NTU IM)Programming Design – Complexity and Graphs 14 / 54

Examples

• Let 𝑓 𝑛 = 100𝑛2, we have 𝑔 𝑛 = 𝑛3, i.e., 𝑓 𝑛 ∈ 𝑂(𝑛3).

– We may choose 𝑐 = 100 and 𝑁 = 1: 100𝑛2 ≤ 𝟏𝟎𝟎𝑛3 for all 𝑛 ≥ 𝟏.

– We may choose 𝑐 = 1 and 𝑁 = 100: 100𝑛2 ≤ 𝟏𝑛3 for all 𝑛 ≥ 𝟏𝟎𝟎.

• Let 𝑓 𝑛 = 100 𝑛 + 5𝑛, we have 𝑔 𝑛 = 𝑛:

– We may choose 𝑐 = 6 and 𝑁 = 10: 100 𝑛 + 5𝑛 ≤ 𝟔𝑛 for all 𝑛 ≥ 𝟏𝟎.

• Let 𝑓 𝑛 = 𝑛 log 𝑛 + 𝑛2, we have 𝑔 𝑛 = 𝑛2.

• Let 𝑓 𝑛 = 10000, we have 𝑔 𝑛 = 1.

• Let 𝑓 𝑛 = 0.0001𝑛2, we cannot have 𝑔 𝑛 = 𝑛:

– For any value of 𝑐, we have 0.0001𝑛2 > 𝑐𝑛 if 𝑛 > 10000𝑐.

• Let 𝑓 𝑛 = 2𝑛, we cannot have 𝑔 𝑛 = 𝑛100.

Complexity The “big O” notation

Terminology of graphs Graph algorithms

Ling-Chieh Kung (NTU IM)Programming Design – Complexity and Graphs 15 / 54

Growth of functions

• In general, we may say that functions have different growth speeds.

• If a function grows faster than another one, we say the former “dominates” the

latter or the former is “an upper bound” of the latter.

𝑛 5 10 50 100 1000

log 𝑛 2.32 3.32 5.64 6.64 9.97

𝑛 2.24 3.16 7.07 10.00 31.62

𝑛 5 10 50 100 1000

𝑛 log 𝑛 11.61 33.22 282.19 664.39 9965.78

𝑛2 25 100 2500 10000 1000000

2𝑛 32 1024 1.13 × 1015 1.27 × 1030 1.07 × 10301

𝑛! 120 3628800 3.04 × 1064 9.33 × 10157 Too big!!

Complexity The “big O” notation

Terminology of graphs Graph algorithms

Ling-Chieh Kung (NTU IM)Programming Design – Complexity and Graphs 16 / 54

Growth of functions

Complexity The “big O” notation

Terminology of graphs Graph algorithms

Ling-Chieh Kung (NTU IM)Programming Design – Complexity and Graphs 17 / 54

Growth of functions

Complexity The “big O” notation

Terminology of graphs Graph algorithms

Ling-Chieh Kung (NTU IM)Programming Design – Complexity and Graphs 18 / 54

The “big O” notation for algorithms

• For an algorithm, we use the “big O” notation to denote its complexity.

– If the number of basic operations is 𝑓(𝑛), we first find a valid 𝑔(𝑛) such

that 𝑓 𝑛 ∈ 𝑂(𝑔 𝑛).

– We then say that the algorithm’s complexity is 𝑶(𝒈 𝒏), or just 𝒈(𝒏).

• Note that for each 𝑓(𝑛), we have many valid 𝑔(𝑛). As these 𝑔(𝑛) are all upper

bounds of 𝑓(𝑛), we typically use the smallest one that we may find.

Complexity The “big O” notation

Terminology of graphs Graph algorithms

Ling-Chieh Kung (NTU IM)Programming Design – Complexity and Graphs 19 / 54

Example 1

• Going back to the previous example,

algorithm 2’s complexity is 𝑂(𝑚𝑛).

– The execution time is proportional to

the matrix size.

– It should be fine for the matrix to

have millions of elements.

int maxRowSum(int A[][MAX_COL_CNT],

int m, int n)

{

int maxRowSumValue = 0;

int maxRowNumber = 0;

for(int i = 0; i < m; i++)

{

int aRowSum = 0;

for(int j = 0; j < n; j++)

aRowSum += A[i][j];

if(aRowSum > maxRowSumValue)

{

maxRowSumValue = aRowSum;

maxRowNumber = i + 1;

}

}

return maxRowNumber;

}

Complexity The “big O” notation

Terminology of graphs Graph algorithms

Ling-Chieh Kung (NTU IM)Programming Design – Complexity and Graphs 20 / 54

Example 2

• Recall our examples for listing all prime numbers

that are below 𝑛.

• What is the most naïve algorithm’s complexity?

– Consider isPrime() first.

– The number of operations depends on the

value of 𝒙! 18 is easy but 17 is hard.

#include <iostream>

using namespace std;

bool isPrime(int x);

int main()

{

int n = 0;

cin >> n;

for(int i = 2; i <= n; i++)

{

if(isPrime(i) == true)

cout << i << " ";

}

return 0;

}

bool isPrime(int x)

{

for(int i = 2; i < x; i++)

if(x % i == 0)

return false;

return true;

}

Complexity The “big O” notation

Terminology of graphs Graph algorithms

Ling-Chieh Kung (NTU IM)Programming Design – Complexity and Graphs 21 / 54

Worst-case time complexity

• In many cases, the number of operations of running an algorithm depends on not

only the number of input values but also contents of input values.

• People talk about two kinds of time complexity:

– Average-case time complexity: the expected number of operations

required for a randomly drawn input. The probability distribution matters.

– Worst-case time complexity: the maximum possible number of operations

required for a randomly drawn input.

• The “big O” notation typically deals with worst-case complexity.

Complexity The “big O” notation

Terminology of graphs Graph algorithms

Ling-Chieh Kung (NTU IM)Programming Design – Complexity and Graphs 22 / 54

Example 2

• The most naïve algorithm’s complexity:

– Checking whether 𝑥 is prime is 𝑂 𝑥 .

– Checking all values below 𝑛 is

𝑂 1 + 2 +⋯+ 𝑛 = 𝑂(𝑛2).

• The most naïve algorithm’s complexity is 𝑂(𝑛2).

#include <iostream>

using namespace std;

bool isPrime(int x);

int main()

{

int n = 0;

cin >> n;

for(int i = 2; i <= n; i++)

{

if(isPrime(i) == true)

cout << i << " ";

}

return 0;

}

bool isPrime(int x)

{

for(int i = 2; i < x; i++)

if(x % i == 0)

return false;

return true;

}

Complexity The “big O” notation

Terminology of graphs Graph algorithms

Ling-Chieh Kung (NTU IM)Programming Design – Complexity and Graphs 23 / 54

Example 3

• We have a better algorithm:

• For isPrime(), the complexity is 𝑂(𝑥).

• For the whole algorithm, the complexity is 𝑂 σ𝑘=1
𝑛 𝑘 . How large is this?

bool isPrime(int x)

{

for(int i = 2; i * i <= x; i++)

if(x % i == 0)

return false;

return true;

}

Complexity The “big O” notation

Terminology of graphs Graph algorithms

Ling-Chieh Kung (NTU IM)Programming Design – Complexity and Graphs 24 / 54

Example 3: analysis

• Obviously, we have

෍

𝑘=1

𝑛

𝑘 = 1 +⋯ 𝑛 ≤ 𝑛 +⋯+ 𝑛 = 𝑛 𝑛 = 𝑛3/2.

• Therefore, we have 𝑶(𝒏𝟑/𝟐) for the better algorithm.

– This is better than 𝑂(𝑛2). This algorithm is indeed theoretically better.

– Is it the smallest upper bound?

Complexity The “big O” notation

Terminology of graphs Graph algorithms

Ling-Chieh Kung (NTU IM)Programming Design – Complexity and Graphs 25 / 54

Example 3: analysis

• Thanks to calculus, we have

෍

𝑘=1

𝑛

𝑘 ≤ න
1

𝑛+1

𝑥1/2𝑑𝑥 = ቤ
2

3
𝑥3/2

1

𝑛+1

=
2

3
𝑛 + 1 3/2 − 1 .

• If 𝑛 = 9:

Complexity The “big O” notation

Terminology of graphs Graph algorithms

Ling-Chieh Kung (NTU IM)Programming Design – Complexity and Graphs 26 / 54

Example 3: analysis

• Thanks to calculus, we have

෍

𝑘=1

𝑛

𝑘 ≥ න
0

𝑛

𝑥1/2𝑑𝑥 = ቤ
2

3
𝑥3/2

0

𝑛

=
2

3
𝑛3/2.

• If 𝑛 = 9:

Complexity The “big O” notation

Terminology of graphs Graph algorithms

Ling-Chieh Kung (NTU IM)Programming Design – Complexity and Graphs 27 / 54

Example 3: analysis

• Now we have

2

3
𝑛3/2 ≤ ෍

𝑘=1

𝑛

𝑘 ≤
2

3
𝑛 + 1 3/2 − 1 ,

• Therefore, 𝑂 σ𝑘=1
𝑛 𝑘 = 𝑂(𝑛3/2) should be a good estimate.

• Now we know why studying calculus! XD

Complexity The “big O” notation

Terminology of graphs Graph algorithms

Ling-Chieh Kung (NTU IM)Programming Design – Complexity and Graphs 28 / 54

Example 4

• For listing all prime numbers below 𝑛, our best algorithm is:

– The outer loop has 𝑂(𝑛) iterations.

– For the 𝑖th iteration of the outer loop, the inner loop has 𝑂(Τ𝑛 𝑖) iterations.

– Let’s ignore the selection statement for simplicity (“in the worst case”).

• The overall complexity is 𝑂(Τ𝑛 2+ Τ𝑛 3 +⋯+ Τ𝑛 𝑛). How large is it?

Given a Boolean array A of length n
Initialize all elements in A to be true // assuming prime
for i from 2 to n

if Ai is true
print i
for j from 1 to ⌊ Τ𝑛 𝑖⌋ // eliminating composite numbers

Set A[𝑖 × 𝑗] to false

Complexity The “big O” notation

Terminology of graphs Graph algorithms

Ling-Chieh Kung (NTU IM)Programming Design – Complexity and Graphs 29 / 54

Example 4: analysis

• We have

𝑛
1

2
+
1

3
+⋯+

1

𝑛
≤ 𝑛න

1

𝑛 1

𝑥
𝑑𝑥 = 𝑛 ln 𝑛 .

• Therefore, 𝑂 Τ𝑛 2 + Τ𝑛 3+⋯+ Τ𝑛 𝑛 = 𝑂(𝑛 ln 𝑛).

– 𝑛 ln 𝑛 < 𝑛 𝑛, good!

• In fact, the inner loop will be initiated only if we encounter a prime number.

• The true complexity is

𝑂
𝑛

2
+
𝑛

3
+
𝑛

5
+
𝑛

7
+

𝑛

11
+⋯ .

– Even smaller than 𝑂(𝑛 ln 𝑛).

Complexity The “big O” notation

Terminology of graphs Graph algorithms

Ling-Chieh Kung (NTU IM)Programming Design – Complexity and Graphs 30 / 54

Remarks

• Analyzing an algorithm’s complexity is critical in algorithm design.

– We focus on how the number of operations grow as the input size increases.

• We use the “big O” notation:

– We ignore tedious details, non-bottlenecks, and constants.

– We focus on the worst case.

• There are some algorithms whose complexity cannot be easily analyzed.

– E.g., those constructed by recursion.

• There are other measurements (small o, theta, big omega, small omega).

– Expect them in your future courses!

Complexity The “big O” notation

Terminology of graphs Graph algorithms

Ling-Chieh Kung (NTU IM)Programming Design – Complexity and Graphs 31 / 54

Outline

• Complexity

• The “big O” notation

• Terminology of graphs

• Graph algorithms

Complexity The “big O” notation

Terminology of graphs Graph algorithms

Ling-Chieh Kung (NTU IM)Programming Design – Complexity and Graphs 32 / 54

Graphs/networks

• In graph theory, we talk about

graphs/networks.

• A graph has nodes (vertices) and edges

(arcs/links).

– A typical interpretation: Nodes are

locations and arcs are roads.

• This graph has 9 nodes and 13 edges.

• Two nodes are adjacent if there is an

edge between them.

– We say they are neighbors.

– A node’s degree is its number of

neighbors.

1

2

3

4

5

6

7

8

9

Complexity The “big O” notation

Terminology of graphs Graph algorithms

Ling-Chieh Kung (NTU IM)Programming Design – Complexity and Graphs 33 / 54

Directed/undirected edges

• Edges may be directed or undirected.

– For an edges from 𝑢 to 𝑣, we denote

it as (𝑢, 𝑣) if it is directed or [𝑢, 𝑣] if

it is undirected.

– A graph is a directed graph if its

edges are directed.

• In this graph, we have edge [1, 6] (or

[6, 1]), but we do not have edge [5, 6].

• This is an undirected graph.

1

2

3

4

5

6

7

8

9

Complexity The “big O” notation

Terminology of graphs Graph algorithms

Ling-Chieh Kung (NTU IM)Programming Design – Complexity and Graphs 34 / 54

Paths

• A path (route) from node 𝑠 to node 𝑡 is a

set of directed edges (𝑠, 𝑣1), (𝑣1, 𝑣2), …,

and (𝑣𝑘−1, 𝑣𝑘), and (𝑣𝑘 , 𝑡) such that 𝑠
and 𝑡 are connected.

– 𝑠 is called the source and 𝑡 is called

the destination of the path.

– Sometimes we write a path as

(𝑠, 𝑣1, 𝑣2, … , 𝑣𝑘 , 𝑡).

– Direction matters!

• There are at least two paths from node 8

to node 9: (8, 1, 5, 9) and (8, 7, 1, 2, 3, 9).

1

2

3

4

5

6

7

8

9

Complexity The “big O” notation

Terminology of graphs Graph algorithms

Ling-Chieh Kung (NTU IM)Programming Design – Complexity and Graphs 35 / 54

Cycles

• A cycle (equivalent to circuit in some

textbooks) is a path whose destination

node is the source node.

– A path is a simple path if it is not a

cycle.

– A graph is an acyclic graph if it

contains no cycle.

• There is a cycle (1, 2, 3, 9, 6).

1

2

3

4

5

6

7

8

9

Complexity The “big O” notation

Terminology of graphs Graph algorithms

Ling-Chieh Kung (NTU IM)Programming Design – Complexity and Graphs 36 / 54

Weights

• An edge may have a weight.

– A weight may be a distance, a cost

per unit item shipped, etc.

– A weighted graph is a graph whose

edges are weighted.

• In this network, we may use edge

weights to represent distances.

– The distance of the path (8, 1, 5, 9) is

36. That of (8, 7, 1, 2, 3, 9) is 56.

• A node may also have a weight.

1

2

3

4

5

6

7

8

9

18

15

12

6

10
4

8

11

5

7

18

23

9

Complexity The “big O” notation

Terminology of graphs Graph algorithms

Ling-Chieh Kung (NTU IM)Programming Design – Complexity and Graphs 37 / 54

Storing a graph in an adjacency matrix

• To write a program that deals with a graph, we must have a way to store the

graph in our program.

• Two typical data structures are adjacency matrices and adjacency lists.

• Adjacency matrix:

– For a graph with 𝑛 nodes, we construct an 𝑛 × 𝑛 array 𝐴.

– If the graph is unweighted, make the array a Boolean array. Let 𝐴𝑖𝑗 = 1 if

there is an edge 𝑖, 𝑗 (or 𝑖, 𝑗 if undirected). Let 𝐴𝑖𝑖 = 1 for either case.

– If the graph is unweighted, make the array an integer/float/double array. Let

𝐴𝑖𝑗 be the weight of the edge (𝑖, 𝑗) (or 𝑖, 𝑗 if undirected). Use a specially

chosen value (−1, ∞, etc.) to indicate the nonexistence of edges.

Complexity The “big O” notation

Terminology of graphs Graph algorithms

Ling-Chieh Kung (NTU IM)Programming Design – Complexity and Graphs 38 / 54

Adjacency matrix: example 1

• For this unweighted graph, the adjacency

matrix is

1 1 0 0 1 1 1 1 0
1 1 1 0 1 0 0 0 0
0 1 1 0 1 0 0 0 1
0 0 0 1 0 0 1 0 0
1 1 1 0 1 0 0 0 1
1 0 0 0 0 1 0 0 1
1 0 0 1 0 0 1 1 0
1 0 0 0 0 0 1 1 0
0 0 1 0 1 1 0 0 1

1

2

3

4

5

6

7

8

9

Complexity The “big O” notation

Terminology of graphs Graph algorithms

Ling-Chieh Kung (NTU IM)Programming Design – Complexity and Graphs 39 / 54

Adjacency matrix: example 2

• For this weighted graph, the adjacency

matrix is

−1 7 −1 −1 8 15 23 18 −1
7 −1 11 −1 5 −1 −1 −1 −1
−1 11 −1 −1 4 −1 −1 −1 6
−1 −1 −1 −1 −1 −1 18 −1 −1
8 5 4 −1 −1 −1 −1 −1 10
15 −1 −1 −1 −1 −1 −1 −1 12
23 −1 −1 18 −1 −1 −1 9 −1
18 −1 −1 −1 −1 −1 9 −1 −1
−1 −1 6 −1 10 12 −1 −1 −1

1

2

3

4

5

6

7

8

9

18

15

12

6

10
4

8

11

5

7

18

23

9

Complexity The “big O” notation

Terminology of graphs Graph algorithms

Ling-Chieh Kung (NTU IM)Programming Design – Complexity and Graphs 40 / 54

Adjacency matrix

• An adjacency matrix is simple and straightforward.

• However, it is space inefficient if the graph has only few edges.

• To remedy this, we may use an adjacency list.

– For each node, we record its neighbors and (if weighted) distances to it

neighbors.

– We will introduce this until we introduce pointers.

Complexity The “big O” notation

Terminology of graphs Graph algorithms

Ling-Chieh Kung (NTU IM)Programming Design – Complexity and Graphs 41 / 54

Outline

• Complexity

• The “big O” notation

• Terminology of graphs

• Graph algorithms

Complexity The “big O” notation

Terminology of graphs Graph algorithms

Ling-Chieh Kung (NTU IM)Programming Design – Complexity and Graphs 42 / 54

Graph algorithms

• As graphs can represent many things (logistic networks, power networks, social

networks, etc.), there are many interesting issues.

– How to find a shortest path from a node to another node?

– How to link all nodes while minimizing the weights of selected edges?

– How to check whether there is a cycle?

– How to find the node with the maximum degree (number of neighbors)?

– How to select the minimum number of nodes such that all nodes are either

selected or adjacent to a selected node?

• Algorithms that solve these issues on graphs are graph algorithms.

• Below we give some examples demonstrating how to use an adjacency matrix.

Complexity The “big O” notation

Terminology of graphs Graph algorithms

Ling-Chieh Kung (NTU IM)Programming Design – Complexity and Graphs 43 / 54

Maximum degree

• How to find the node with the maximum degree (number of neighbors)?

• Given an adjacency matrix for an unweighted graph:

– For each row (which means a node), find the number of 1s.

– Compare all rows to see which row is the winner.

• This is exactly the algorithm of finding the row with the largest row sum!

Complexity The “big O” notation

Terminology of graphs Graph algorithms

Ling-Chieh Kung (NTU IM)Programming Design – Complexity and Graphs 44 / 54

Minimum number of edges

• Given an undirected unweighted graph

𝐺 = (𝑉, 𝐸), where 𝑉 is the set of nodes

and 𝐸 is the set of edges, and a node 𝑠,

please find the minimum numbers of

edges one needs to move from 𝑠 to all

other nodes.

• In this graph, if 𝑠 = 2, the value beside

each node is the minimum number of

edges one needs to move from node 2 to

that node.

1

2

3

4

5

6

7

8

9

0

1

1

1

2

2

2

2

3

Complexity The “big O” notation

Terminology of graphs Graph algorithms

Ling-Chieh Kung (NTU IM)Programming Design – Complexity and Graphs 45 / 54

Minimum number of edges

• Those “shortest paths” (thick lines in the

graph) together form a spanning tree.

1

2

3

4

5

6 7 8 9

1

2

3

4

5

6

7

8

9

0

1

1

1

2

2

2

2

3

Complexity The “big O” notation

Terminology of graphs Graph algorithms

Ling-Chieh Kung (NTU IM)Programming Design – Complexity and Graphs 46 / 54

Minimum number of edges

• To find the distances from 𝑠 to all nodes, we use breadth-first search (BFS).

• Let all nodes have weights representing their distances from 𝑠.

– First, we label 𝑠 as 0 and all other nodes as ∞.

– We then find the neighbors of 𝑠. Label them as 1.

– For each node whose label is 1, find its neighbors that are currently labeled

as ∞. Label them as 2.

– Continue until all nodes are labeled.

• The graph should be connected (i.e., there is a path from 𝑠 to any other node).

Complexity The “big O” notation

Terminology of graphs Graph algorithms

Ling-Chieh Kung (NTU IM)Programming Design – Complexity and Graphs 47 / 54

Example

1

2

3

4

5

6

7

8

9

0

1

1

1

∞

∞

∞

∞

∞

1

2

3

4

5

6

7

8

9

0

∞

∞

∞

∞

∞

∞

∞

∞

Complexity The “big O” notation

Terminology of graphs Graph algorithms

Ling-Chieh Kung (NTU IM)Programming Design – Complexity and Graphs 48 / 54

Example

1

2

3

4

5

6

7

8

9

0

1

1

1

2

2

2

2

3

1

2

3

4

5

6

7

8

9

0

1

1

1

2

2

2

2

∞

Complexity The “big O” notation

Terminology of graphs Graph algorithms

Ling-Chieh Kung (NTU IM)Programming Design – Complexity and Graphs 49 / 54

Implementation: function header

#include <iostream>

using namespace std;

const int MAX_NODE_CNT = 10;

// Input:

// - adjacent: the adjacency matrix

// - nodeCnt: number of nodes

// - source: the source node

// - dist: to store the distances from the source

// This function will find the distances from the source

// node to each node and put them in "dist"

void distFromSource(const bool adjacent[][MAX_NODE_CNT],

int dist[], int nodeCnt, int source);

Complexity The “big O” notation

Terminology of graphs Graph algorithms

Ling-Chieh Kung (NTU IM)Programming Design – Complexity and Graphs 50 / 54

Implementation: main function

int main()

{

int nodeCnt = 5;

bool adjacent[MAX_NODE_CNT][MAX_NODE_CNT]

= {{1, 1, 0, 0, 1}, {1, 1, 1, 0, 0}, {0, 1, 1, 1, 0},

{0, 0, 1, 1, 1}, {1, 0, 0, 1, 1}};

int dist[MAX_NODE_CNT] = {0};

int source = 0;

distFromSource(adjacent, dist, nodeCnt, source);

cout << "\nThe complete result: \n";

for(int i = 0; i < nodeCnt; i++)

cout << dist[i] << " ";

return 0;

}

Complexity The “big O” notation

Terminology of graphs Graph algorithms

Ling-Chieh Kung (NTU IM)Programming Design – Complexity and Graphs 51 / 54

Implementation: function body

void distFromSource(const bool adjacent[][MAX_NODE_CNT],

int dist[], int nodeCnt, int source)

{

for(int i = 0; i < nodeCnt; i++)

dist[i] = nodeCnt; // why not infinity?

dist[source] = 0;

int curDist = 1;

int complete = 1;

// continue to the next page

Complexity The “big O” notation

Terminology of graphs Graph algorithms

Ling-Chieh Kung (NTU IM)Programming Design – Complexity and Graphs 52 / 54

Implementation: function body

// continue from the previous page

while(complete < nodeCnt) {

for(int i = 0; i < nodeCnt; i++) { // one for a level

if(dist[i] == curDist - 1) {

for(int j = 0; j < nodeCnt; j++) { // from i to j

if(adjacent[i][j] == true

&& dist[j] == nodeCnt) {

dist[j] = curDist;

complete++;

}

}

}

}

curDist++;

}

}

Complexity The “big O” notation

Terminology of graphs Graph algorithms

Ling-Chieh Kung (NTU IM)Programming Design – Complexity and Graphs 53 / 54

Complexity

• There is a three-level loop.

– Each of the two for loops has 𝑛 iterations, where 𝑛 is the number of nodes.

– In the worst case, the while loop has 𝑛 iterations (if in each iteration we

label only one node).

• Is the algorithm’s complexity 𝑂 𝑛3 ?

• Not really!

– The most inner loop will be initiated only if its label equals curDist – 1.

– For each node, this will be true for exactly once.

– In the worst case, the while loop and first for loop together give 𝑂(𝑛2).

– The most inner loop gives another 𝑂(𝑛2).

– The overall complexity is 𝑂 𝑛2 + 𝑛2 = 𝑂(𝑛2).

Complexity The “big O” notation

Terminology of graphs Graph algorithms

Ling-Chieh Kung (NTU IM)Programming Design – Complexity and Graphs 54 / 54

Remarks

• The name “breadth-first search” comes from the

fact that “we reach all neighbors of a node

before we reach neighbors of neighbors.”

– Please search for breadth-first search and

“depth-first search” to learn more.

• BFS can be done with a lower complexity.

– 𝑂(𝑛 +𝑚), where 𝑚 is the number of edges.

– By using a data structure “queue.”

1

2

3

4

5

6 7 8 9

Complexity The “big O” notation

Terminology of graphs Graph algorithms

