Motivations and prerequisites Comparison and indexing operators

Assignment and self-assignment operators Addition operators

Programming Design
Operator Overloading
Ling-Chieh Kung

Department of Information Management
National Taiwan University

Programming Design — Operator Overloading 1/49 Ling-Chieh Kung (NTU IM)

Motivations and prerequisites Comparison and indexing operators

Assignment and self-assignment operators Addition operators

Outline

« Motivations and prerequisites

« Overloading comparison and indexing operators

« Overloading assignment and self-assignment operators
« Overloading addition operators

Programming Design — Operator Overloading 2149 Ling-Chieh Kung (NTU IM)

Motivations and prerequisites Comparison and indexing operators

Assignment and self-assignment operators Addition operators

Recall our MyVector class

class MyVector
{
private:
int n;
double* m;
public:
MyVector () ;
MyVector (int dim, double v[]);
MyVector (const MyVectoré& v) ;
~MyVector () ;
void print() ;

};

Programming Design — Operator Overloading 3/49 Ling-Chieh Kung (NTU IM)

Motivations and prerequisites

Comparison and indexing operators

Assignment and self-assignment operators

Addition operators

Recall our MyVector class

MyVector: :MyVector ()
{
n=
m
}
MyVector: :MyVector (int dim, double v[])
{

n =

0;
nullptr;

dim;

m = new double[dim] ;

for(int i = 0; i < dim; i++)
m[i] = v[i];

}
MyVector: : ~MyVector ()
{

delete [] m;

}

MyVector: :MyVector (const MyVectoré& v)
{

n=v.n;

m = new double[n];

for(int 1 = 0; 1 < n; iH)
m[i] = v.m[i];

}
void MyVector: :print ()
{
Cout << n(n’.
for(int i =0; i<n-1; iH)
cout < m[i] K", ";
cout << m[n-1] << ")\n";
}

Programming Design — Operator Overloading

4149

Ling-Chieh Kung (NTU IM)

Motivations and prerequisites

Comparison and indexing operators

Assignment and self-assignment operators

Addition operators

Comparing MyVector objects

« When we have many vectors, we may need to compare them.
« For vectorsuand v:
— u = v if their dimensions are equal and u; = v; for all I.
— u <v if their dimensions are equal and u; <v; for all I.
— u < v if their dimensions are equal and u; <v; for all i.
« How to add member functions that do comparisons?
— Naturally, they should be instance rather than static functions.

Programming Design — Operator Overloading 5/49

Ling-Chieh Kung (NTU IM)

Motivations and prerequisites

Comparison and indexing operators

Assignment and self-assignment operators

Addition operators

Member function isEqual ()

class MyVector

{

private:
int n;
double* m;

public:
MyVector () ;
MyVector (int n, double m[]) ;
MyVector (const MyVectoré& v) ;
~MyVector () ;

bool MyVector: :isEqual (const MyVectoré& v)

if(n !'= v.n)
return false;
else
{
for(int i = 0; 1 < n; i++)
{
if(m[i] '= v.m[i])
return false;

void print() ; }
bool isEqual (const MyVectoré& v) ; }
}; return true;
Programming Design — Operator Overloading 6/49 Ling-Chieh Kung (NTU IM)

Motivations and prerequisites

Comparison and indexing operators

Assignment and self-assignment operators

Addition operators

Member function isEqual ()

int main()

{
double d1[5] = {1, 2, 3, 4, 5};
MyVector al(5, dl); // (1)

double d2[4] = {1, 2, 3, 4},
MyVector a2(4, d2); // (2)
MyVector a3(al); // (3)

cout << (al.isEqual (a2) ? "Y" :
cout << "\n";
cout << (al.isEqual (a3) ? "Y"
cout << "\n";

return O;

"N") : // N

. HN"); // Y

MyVector al (1)

intn=5

double* m

\ 4
=
N
w
1Y
o

MyVector a2 (2)

intn=4

double* m

4
=
N
w
1Y

MyVector a3 (3)

intn=5

double* m

\ 4
=
N
w
1~
)]

Programming Design — Operator Overloading

7149

Ling-Chieh Kung (NTU IM)

Motivations and prerequisites Comparison and indexing operators

Assignment and self-assignment operators Addition operators

isEqual () is fine, but...

Adding the instance function isEqual () is fine.

— But it is not the most intuitive way.

— If we can write if (al = a2), it will be great!
Of course we cannot:

— The compiler does not know what to do to this statement.

— We need to define == for MyVector just as we define member functions.
In fact, = has been overloaded for different data types.

— We may compare two ints, two doubles, one int and one double, efc.
— We will now define how == should compare two MyVectors.

This is operator overloading.

Programming Design — Operator Overloading 81/49 Ling-Chieh Kung (NTU IM)

Motivations and prerequisites Comparison and indexing operators

Assignment and self-assignment operators Addition operators

Operator overloading

« Most operators (if not all) have been overloaded in the C++ standard.

— E.g., the division operator / has been overloaded.

— Divisions between integers differ from those between fractional values!
« Overloading operators for self-defined classes are not required,

— Each overloaded operator can be replaced by an instance function.

— However, it may make programs clearer and the class easier to use.
e Some restrictions:

— Not all operators can be overloaded (see your textbook).

— The number of operands for an operator cannot be modified.

— One cannot create new operators.

Programming Design — Operator Overloading 9/49 Ling-Chieh Kung (NTU IM)

Motivations and prerequisites Comparison and indexing operators

Assignment and self-assignment operators Addition operators

this

] . class A
« When you create an object, it {
occupies a memory space. private:
int a;
MyVector al public:
: — void £() { cout << this << "\n"; }
int n =S A* g() { return this; }
double* m » 1|2 314|565 };
int main()
* [nside an instance function, this { A obj;
IS a pointer storing the address of cout << &obj << "\n"; // 0x9ffed0
that object. obj.£(); // 0x9ffedo

cout << (&bj = dbj.g()) << "\n"; // 1

— thisis a C++ keyword. return 0

Programming Design — Operator Overloading 10/49 Ling-Chieh Kung (NTU IM)

Motivations and prerequisites Comparison and indexing operators

Assignment and self-assignment operators Addition operators

this

« The two implementations are identical:

void MyVector: :print () void MyVector: :print()
{ {
cout << "("; cout << "(";
for(int i =0;, i<n-1; iH) for(int 1 = 0; i < this->n - 1; i++)
cout < m[i] K ", "; cout < this->m[i] < ", ";
cout << m[n - 1] << ")\n"; cout << this->m[this->n - 1] << ")\n";
} }

Programming Design — Operator Overloading 11/49 Ling-Chieh Kung (NTU IM)

Motivations and prerequisites Comparison and indexing operators

Assignment and self-assignment operators Addition operators

Why using this?

e Suppose that n is an instance variable.
— Usually you can use n directly instead of this->n.

— However, if you want to have a local variable or function parameter
having the same name as an instance variable, you need this->.

MyVector: :MyVector (int d, int v[])
{
n=4d,
for(int i = 0; 1 < n; i+)
m[i] = v[i];

}

MyVector: :MyVector (int n, int m[])
{
this->n = n;
for(int i = 0; i < n; i++)
this->m[i] = m[i];
}

A local variable hides the instance variable with the same name.
— this->n IS the instance variable and n is the local variable.

Programming Design — Operator Overloading

12749

Ling-Chieh Kung (NTU IM)

Motivations and prerequisites Comparison and indexing operators

Assignment and self-assignment operators Addition operators

Good programming style

* You may choose to always use this->when accessing instance variables and
functions.

« This will allow other programmers (or yourself in the future) to know they are
members without looking at the class definition.

« Some other reasons for using this will become clear shortly.

Programming Design — Operator Overloading 13/49 Ling-Chieh Kung (NTU IM)

Motivations and prerequisites Comparison and indexing operators

Assignment and self-assignment operators Addition operators

Constant objects

« Some variables are by nature constants.

const double PI = 3.1416;

« We may also have constant objects.

double d[3] = {0, 0, O};
const MyVector ORIGIN 3D(3, d);

— This is the origin in R3. It should not be modified.
« Should there be any restriction on instance function invocation?

Programming Design — Operator Overloading 14 /49 Ling-Chieh Kung (NTU IM)

Motivations and prerequisites

Comparison and indexing operators

Assignment and self-assignment operators

Addition operators

Constant objects

« A constant object cannot invoke a function
that modifies its instance variables.

— In C++, functions that may be invoked by
a constant object must be declared as a
constant instance function.

* [or a constant instance function:
— It can be called by non-constant objects.
— It cannot modify any instance variable.
» [For a non-constant instance function:

— It cannot be called by constant objects
even if no instance variable is modified.

class MyVector
{
private:
int n;
int* m;
public:
MyVector () ;
MyVector (int dim, int v[]);
MyVector (const MyVectoré& v) ;
~MyVector () ;
void print() const;

};

Programming Design — Operator Overloading 15/49

Ling-Chieh Kung (NTU IM)

Motivations and prerequisites

Comparison and indexing operators

Assignment and self-assignment operators

Addition operators

Constant Instance variables

We may have constant instance variables.

— E.g., for a vector, its dimension should
be fixed once it is determined.

Obviously, a constant instance variable
should be initialized in the constructor(s).

— However: | myvector: :MyVector ()
{
n=20; // error!
m = nullptr;
}

A constant instance variable cannot be
assigned a value (locally or globally).

class MyVector
{
private:
const int n;
int* m;
public:
MyVector () ;
MyVector (int dim, int v[]);
MyVector (const MyVectoré& v) ;
~MyVector () ;
void print() const;

};

Programming Design — Operator Overloading 16/49

Ling-Chieh Kung (NTU IM)

Motivations and prerequisites Comparison and indexing operators

Assignment and self-assignment operators

Member initializers

Addition operators

 \We need a member
initializer.

— A specific operation for
Initializing an instance
variable.

— Can also be used for
Initializing non-
constant instance
variables.

 Member initializers are
used a lot in general.

MyVector: :MyVector () : n(0)

{ m = nullptr;
D}dyVector:: MyVector (int dim, int v[]) : n(dim)
{ for(int i = 0; i < n; i+)
m[i] = v[i];
n}ayvector:: MyVector (const MyVectors v) : n(v.n)

{
m = new double([n];
for(int 1 = 0; i < n; i)
m[i] = v.m[i];

Programming Design — Operator Overloading

171749 Ling-Chieh Kung (NTU IM)

Motivations and prerequisites Comparison and indexing operators

Assignment and self-assignment operators Addition operators

Outline

« Motivations and prerequisites

« Overloading comparison and indexing operators

« Overloading assignment and self-assignment operators
« Overloading addition operators

Programming Design — Operator Overloading 18/49 Ling-Chieh Kung (NTU IM)

Motivations and prerequisites Comparison and indexing operators

Assignment and self-assignment operators Addition operators

Overloading an operator

* An operator is overloaded by “implementing a special instance function”.

— It cannot be implemented as a static function.
* Let opbe the operator to be overloaded, the “special instance function” is
always named

operatorop

— The keyword operator is used for overloading operators.
* Let’s overload = for MyVector.

Programming Design — Operator Overloading 19/49 Ling-Chieh Kung (NTU IM)

Motivations and prerequisites Comparison and indexing operators

Assignment and self-assignment operators

Overloading ==

Addition operators

Recall that we defined isEqual ():

class MyVector bool MyVector: :isEqual
{ (const MyVectoré& v) const
private: {
int n; if (this->n !'= v.n)
double* m; return false;
public: else {
// others for(int i = 0; i < n; iH) {
bool isEqual if (this->m[i] '= v.m[i])
(const MyVectoré& v) const; return false;
}; }
}
return true;
}

Programming Design — Operator Overloading 20/ 49 Ling-Chieh Kung (NTU IM)

Motivations and prerequisites

Comparison and indexing operators

Assignment and self-assignment operators

Addition operators

Overloading ==

« To overload =, simply do this:

class MyVector
{
private:
int n;
double* m;
public:
// others
bool operator—

};

(const MyVectoré& v) const;

bool MyVector: :operator—
(const MyVectoré& v) const
{
if (this->n != v.n)
return false;
else {
for(int 1 = 0; i < n; i++) {
if (this->m[i] '= v.m[i])
return false;
}

}
return true;

Programming Design — Operator Overloading

21/49

Ling-Chieh Kung (NTU IM)

Motivations and prerequisites

Comparison and indexing operators

Assignment and self-assignment operators

Addition operators

Invoking overloaded operators

We are indeed implementing instance functions with special names.
Regarding invoking these instance functions:

{

int main() // without overloading

double d1[5] = {1, 2, 3, 4, 5};
const MyVector al(5, dl);

double d2[4] = {1, 2, 3, 4};
const MyVector a2 (4, d2);
const MyVector a3(al);

int main() // with overloading

{

double d1[5] = {1, 2, 3, 4, 5};
const MyVector al(5, dl);

double d2[4] = {1, 2, 3, 4};
const MyVector a2 (4, d2);
const MyVector a3(al) ;

cout << (al.isEqual(a2) ? "Y" : "N"); cout << (a1l = a2 ? "Y¥" : "N");
cout << "\n"; cout << "\n";
cout << (al.isEqual(a3) ? "Y" : "N"); cout << (al = a3 ? "Y¥" : "N");
cout << "\n"; cout << "\n";
return 0O; return 0;
} }
Programming Design — Operator Overloading 22 /49 Ling-Chieh Kung (NTU IM) |

Motivations and prerequisites Comparison and indexing operators

Assignment and self-assignment operators Addition operators

Invoking overloaded operators

 Interestingly, we may also do:

int main() // with overloading

{
double d1[5] = {1, 2, 3, 4, 5};
const MyVector al(5, dl);

double d2[4] = {1, 2, 3, 4};
const MyVector a2 (4, d2);
const MyVector a3(al);

cout << (al.operator—(a2) ? "Y" : "N");
cout << "\n";
cout << (al.operator—(a3) ? "Y" : "N");
cout << "\n";

return O;

Programming Design — Operator Overloading 23 /49 Ling-Chieh Kung (NTU IM)

Motivations and prerequisites Comparison and indexing operators

Assignment and self-assignment operators Addition operators

Overloading <

e Let’s overload <

class MyVector bool MyVector: :operator<
{ (const MyVector& v) const
private: {
int n; if (this->n !'= v.n)
double* m; return false;
public: else ({
bool operator— for(int i = 0; 1 < n; i+) {
(const MyVector& v) const; if (this->m[i] >= v.m[i])
bool operator< return false;
(const MyVector& v) const; }
}i }
return true;
}

Programming Design — Operator Overloading 24 /49 Ling-Chieh Kung (NTU IM)

Motivations and prerequisites Comparison and indexing operators

Assignment and self-assignment operators Addition operators

Overloading '=

« Tooverload '=, let’s utilize the overloaded =:

class MyVector bool MyVector: :operator!=
{ (const MyVectoré& v) const
/] ... {
bool operator— if (*this = v)
(const MyVectoré& v) const; return false;
bool operator!= else
(const MyVectoré& v) const; return true;
}; // or return ! (*this = v);
}

« How would you overload >=?

Programming Design — Operator Overloading 25/ 49 Ling-Chieh Kung (NTU IM)

Motivations and prerequisites Comparison and indexing operators

Assignment and self-assignment operators Addition operators

Parameters for overloaded operators

* The number of parameters is class MyVector
restricted for overloaded { p
operators. boo]..-c.aperatox= (const MyVector& v) const;
— The types of parameters are bool operator=(int i, int j); // error
not restricted. b
— The return type is not
restricted. class MyVector
« What is done Is not restricted. { /o
— Always avoid unintuitive void operator=(int i) const
implementations! t

cout << "...\n";
} // no error but never do this!

};

Programming Design — Operator Overloading 26 /49 Ling-Chieh Kung (NTU IM)

Motivations and prerequisites Comparison and indexing operators

Assignment and self-assignment operators Addition operators

Overloading the indexing operator

« Another natural operation that is common for vectors is indexing.

— Given vector v, we want to know/modify the element v;.
« For C++ arrays, we use the indexing operator [].

« May we overload [] for MyVector? Yes!

int main()
{
double d1[5] = {1, 2, 3, 4, 5};
MyVector al (5, dl);
cout << al[3] << endl; // endl is a newline object
al[l] = 4;

return 0;

Programming Design — Operator Overloading 27149 Ling-Chieh Kung (NTU IM)

Motivations and prerequisites Comparison and indexing operators

Assignment and self-assignment operators

Overloading the indexing operator

Addition operators

« Let’soverload []:

class MyVector double MyVector: :operator[] (int i) const
{ {
// ... if(i <0 || i > n)
double operator[] (int i) const; exit(l); // terminate the program!
}; // required <cstdlib>
return m[i];
}

— exit (1) terminates the program by sending 1 to the operating system.
— return 0 in the main function terminates the program by sending 0.
— 0: Normal termination. Other numbers: different errors.

Programming Design — Operator Overloading 28 /49 Ling-Chieh Kung (NTU IM)

Motivations and prerequisites Comparison and indexing operators

Assignment and self-assignment operators

More are needed for []

Addition operators

« Compiling the program with the main function below results in an error!

int main()

{
double d1[5] = {1, 2, 3, 4, 5};
MyVector al(5, dl1); // non-const
cout << al[3] << endl; // good
al[l] = 4; // error!
return O;

}

« Error: al[1] isjusta literal, not a variable.

— A literal cannot be put at the LHS in an assignment operation!
— Just like 3 = 5results in an error.

Programming Design — Operator Overloading 29 /49 Ling-Chieh Kung (NTU IM)

Motivations and prerequisites Comparison and indexing operators

Assignment and self-assignment operators Addition operators

Another overloaded []

 Let’s overload [] into another version:

class MyVector double MyVector: :operator|[] (int i) const
{ {
/... if(1 <0 || i >=n)
double operator[] (int i) const; exit(1l);
double& operator([] (int i) ; return m[i];
}; }
double& MyVector: :operator[] (int i)
{
_ _ if(i <0 || i>n) // same
« The second implementation exit (1) ; // implementation!
returns a reference of a member return m[i];
variable. }

— Modifying that reference modifies the variable.

Programming Design — Operator Overloading 30/49 Ling-Chieh Kung (NTU IM)

Motivations and prerequisites Comparison and indexing operators

Assignment and self-assignment operators

Two different []

Addition operators

« Now the program runs successfully!

int main() double MyVector: :operator[] (int i) const
{ {
double d1[5] = {1, 2, 3, 4, 5}; if(i <0 || 1 > n)
MyVector al (5, dil); exit(1l);
cout << al[l] << endl; // 2 return m[i];
al[l] = 4; // good }
cout << al[l] << endl; // 4 double& MyVector: :operator[] (int i)
{
return O; if(1 <0 || 1i>n)
} exit(1l);
return m[i];
« There is one last question:)

— Which [] i1s invoked?

Programming Design — Operator Overloading 31/49 Ling-Chieh Kung (NTU IM)

Motivations and prerequisites Comparison and indexing operators

Assignment and self-assignment operators Addition operators

Invoking the two []

* The const after the function prototype is the key.

class MyVector

{

// ...

double operator[] (int i) const;
double& operator[] (int i) ;

}r

 If there are both a constant and a non-constant version:

— A constant function is invoked by a constant object.

— A non-constant function is invoked by a non-constant object.
 If there is only a non-constant instance function:

— A constant object cannot invoke it.

Programming Design — Operator Overloading 32149 Ling-Chieh Kung (NTU IM)

Motivations and prerequisites Comparison and indexing operators

Assignment and self-assignment operators Addition operators

Outline

« Motivations and prerequisites

« Overloading comparison and indexing operators

« Overloading assignment and self-assignment operators
« Overloading addition operators

Programming Design — Operator Overloading 33/49 Ling-Chieh Kung (NTU IM)

Motivations and prerequisites

Comparison and indexing operators

Assignment and self-assignment operators

Addition operators

Operations that modify the object

« Some operations do not modify the calling
object.

— E.g., comparisons and indexing.
« Some operations modify the calling object.
— E.g., assignments and self-assignments.

— Let’s overload the assignment operator =
first.

« What do we expect?

int main()

{
double d1[3]
double d2[4]

MyVector al (3, dl);
MyVector a2 (4, d2);

a2.print() ;

a2 = al; // assignment

a2.print() ;

return 0;

= {4, 8, 7};
{1, 2, 3, 4};

Programming Design — Operator Overloading 34149

Ling-Chieh Kung (NTU IM)

Motivations and prerequisites

Comparison and indexing operators

Assignment and self-assignment operators

Addition operators

Default assignment operator

 In fact, the assignment operator has been

overloaded!

— The compiler adds a default assignment
operator into each class.

— It simply copies each instance variable
to its corresponding one.

— Just like the default copy constructor.
* What’s wrong if we use the default

assignment operator?

int main()

{

double d1[3] = {4, 8, 7};
double d2[4] = {1, 2, 3, 4};
MyVector al (3, dl);
MyVector a2 (4, d2);

a2.print() ;
a2 = al; // dangerous
// syntax error if
// n is constant
a2.print() ;
a2[0] = 9;
al.print() ;

return O;

Programming Design — Operator Overloading

35/49

Ling-Chieh Kung (NTU IM)

Motivations and prerequisites

Comparison and indexing operators

Assignment and self-assignment operators

Addition operators

Default assignment operator

MyVector& MyVector: :operator= || int main ()
(const MyVector& v) {
{ // the default one double d1[3] = {1, 2, 3};
(1) this->n = v.n; double d2[4] = {1, 2, 3, 4};
this->m = v.m; MyVector al(3, d1); // (1)
MyVector al } MyVector a2(4, d2); // (2)
int n =3
double* m 1|23 al.print();
al = a2; // (3): dangerous
al.print();
tor a2
MyVector ref 0:
intn=4 }
double* m » 1|2 | 3| 4
(2)
‘ Programming Design — Operator Overloading 36 /49 Ling-Chieh Kung (NTU IM) |

Motivations and prerequisites

Comparison and indexing operators

Assignment and self-assignment operators

Addition operators

Default assignment operator

MyVector& MyVector: :operator= || int main ()
(const MyVector& v) {
{ // the default one double d1[3] = {1, 2, 3};
(1) this->n = v.n; double d2[4] = {1, 2, 3, 4};
this->m = v.m; MyVector al(3, d1); // (1)
MyVector al } MyVector a2(4, d2); // (2)
intn=4
double* m 1|23 al.print() ;
N al = a2; // (3): dangerous
al.print();
tor a2 (3)
ector
b return O;
intn=4 }
double* m » 11 2|3]|4
(2)
‘ Programming Design — Operator Overloading 37149 Ling-Chieh Kung (NTU IM) |

Motivations and prerequisites Comparison and indexing operators

Assignment and self-assignment operators

Overloading the assignment operator

Addition operators

 Just like the copy constructor, the assignment operator should be manually
overloaded when there are pointers in a class.

« Our first implementation:

class MyVector void MyVector: :operator=(const MyVectoré& v)
{ {
// ... if (this->n '= v.n)
void operator=(const MyVectoré& v) ; {
}; delete [] this->m;
this->n = v.n;
» [f one execute al = al, we need this->m = new double[this->n] ;
to copy all elements while it is o _ _
not needed. How to save time? forint 1 =0; 1 <n; iH)
this->m[i] = v.m[i];
}

Programming Design — Operator Overloading 38/49 Ling-Chieh Kung (NTU IM)

Motivations and prerequisites Comparison and indexing operators

Assignment and self-assignment operators Addition operators

Overloading the assignment operator

« Our second implementation:

class MyVector void MyVector: :operator=(const MyVectoré& v)
{ {
// ... if (this !'= &v)
void operator=(const MyVectoré& v); {
}; if (this->n !'= v.n)
i {
 This does not allow one to do delete [] this->m;
al = a2 = a3. How to make this->n = v.n;
this possible? this->m = new double[this->n];
}
for(int i = 0; i < n; i++)
this->m[i] = v.m[i];
}
}

Programming Design — Operator Overloading 39/49 Ling-Chieh Kung (NTU IM)

Motivations and prerequisites

Comparison and indexing operators

Assignment and self-assignment operators

Addition operators

Overloading the assignment operator

« Our third implementation:

MyVector& MyVector: :operator=
(const MyVectoré& v)

class MyVector {
{ if (this !'= &v)
72 p
MyVectoré& operator= if (this->n !'= v.n)
(const MyVectoré& v) ; {
}; delete [] this->m;
this->n = v.n;
 If we want to prevent this->m = new double[this->n];
1= = a3, wem }
_(a a2) a3, we may for(int i = 0; i < n; i++)
Instead return const MyVectors. this->m[i] = v.m[i] ;
}
return *this;
}
Programming Design — Operator Overloading 40/ 49 Ling-Chieh Kung (NTU IM) |

Motivations and prerequisites Comparison and indexing operators

Assignment and self-assignment operators Addition operators

Preventing assignments and copying

« In some cases, we disallow assignments between objects of a certain class.
— To do so, overload the assignment operator as a private member.

* In some cases, we disallow creating an object by copying another object.
— To do so, implement the copy constructor as a private member.

« The copy constructor, assignment operator, and destructor form a group.
— If there is no pointer, none of them is needed.
— If there is a pointer, all of them are needed.

Programming Design — Operator Overloading 41149 Ling-Chieh Kung (NTU IM)

Motivations and prerequisites Comparison and indexing operators

Assignment and self-assignment operators Addition operators

Self-assignment operators

« For vectors, it is often to do arithmetic class MyVector
and assignments. t /7
— Given vectors u and v of the same const MyVectors operatort=
dimension, the operation u +=v (const MyVectors v) ;
: };
makes u; become u; + v; for all I. censt. MyVectors MyVector: :oparatorie
e Let’s overload += (const MyVectors v)
. i {
Why returning 1€ (this>n — v.n)
const MyVector&? (
— Returning MyVectoré& allows for(int i = 0; i < n; i)
(al 4= a3) [i] this->m[i] += v.m[1i];
: }
— Returning const MyVectoré& return *this;
disallows (al += a3) = a2. }

Programming Design — Operator Overloading 42 149 Ling-Chieh Kung (NTU IM)

Motivations and prerequisites Comparison and indexing operators

Assignment and self-assignment operators Addition operators

Outline

« Motivations and prerequisites

« Overloading comparison and indexing operators

« Overloading assignment and self-assignment operators
« Overloading addition operators

Programming Design — Operator Overloading 43149 Ling-Chieh Kung (NTU IM)

Motivations and prerequisites Comparison and indexing operators

Assignment and self-assignment operators Addition operators

Arithmetic operators

« Overloading an arithmetic operator is not hard.
» Consider the addition operator + as an example.
— Take const MyVectoré& as a parameter.

— Add each pair of elements one by one.

— Do not modify the calling and parameter objects.

— Return const MyVector to allow al + a2 + a3 but disallow
(al + a2) = a3.

Programming Design — Operator Overloading 441 49 Ling-Chieh Kung (NTU IM)

Motivations and prerequisites Comparison and indexing operators

Assignment and self-assignment operators

Overloading the addition operator

Addition operators

* Let’stry to doit.

class MyVector
{
// ...
const MyVector operator+(const MyVectoré& v);
};
const MyVector MyVector: :operator+(const MyVectoré& v)
{
MyVector sum(*this); // creating a local variable

sum += v; // using the overloaded +=
return sum;

}

* Why not returning const MyVector&?
— Hint: What will happen to sum after the function call is finished?

Programming Design — Operator Overloading 45/ 49 Ling-Chieh Kung (NTU IM)

Motivations and prerequisites Comparison and indexing operators

Assignment and self-assignment operators Addition operators

Overloading the addition operator

* We may overload it for another parameter type:

int main() class MyVector
{ {
double d1[5] = {1, 2, 3}; // ...
MyVector al (3, dil); const MyVector operator+(double d) ;
MyVector a2(3, dil); };
const MyVector MyVector: :operator+ (double d)
al = al + a2; // good {
al.print() ; MyVector sum(*this) ;
al = a2 + 4.2; // good for(int i = 0; i < n; i++)
al.print() ; sum[i] += d;
return sum;
return O; }
}

Programming Design — Operator Overloading 46 /49 Ling-Chieh Kung (NTU IM)

Motivations and prerequisites Comparison and indexing operators

Assignment and self-assignment operators Addition operators

Instance function vs. global function

* One last issue: addition is commutative, but the program below does not run!

int main()

{
double d1[5] = {1, 2, 3, 4, 5};
MyVector al(5, dl);
al = 4.2 + al; // bad!
al.print() ;

return O;
}

* We cannot let a double variable invoke our “instance function operator+”.
« We should overload + as a global function.

Programming Design — Operator Overloading 47 149 Ling-Chieh Kung (NTU IM)

Motivations and prerequisites Comparison and indexing operators

Assignment and self-assignment operators Addition operators

A global-function version

« To overload + as global functions, we need to handle the three combinations:

const MyVector operator+ const MyVector operator+
(const MyVector& v, double d) (const MyVectoré& vl,

{ // need to be a friend of MyVector const MyVectoré& v2)
MyVector sum(v) ; {
for(int i = 0; i < v.n; i++) MyVector sum(vl) ;

sum[i] += d; // pairwise addition sum += v2; // using +=

return sum; return sum;

} }

const MyVector operator+
(double d, const MyVectoré& v)

{
return v + d; // using the previous definition

}

Programming Design — Operator Overloading 48 /49 Ling-Chieh Kung (NTU IM)

Motivations and prerequisites Comparison and indexing operators

Assignment and self-assignment operators Addition operators

A global-function version

« Now all kinds of addition may be performed:

int main()

{
double d1[5] = {1, 2, 3, 4, 5};
MyVector al(5, dl);
MyVector a3(al);

a3 =3+al + 4 + a3;
a3.print() ;

return O;
}

« Each operator needs a separate consideration.

Programming Design — Operator Overloading 49 /49 Ling-Chieh Kung (NTU IM)

