
2: Application Layer 1

Chapter 2
Application Layer

Computer Networking:
A Top Down Approach,
5th edition.
Jim Kurose, Keith Ross
Addison-Wesley, April
2009.

A note on the use of these ppt slides:
We’re making these slides freely available to all (faculty, students, readers).

They’re in PowerPoint form so you can add, modify, and delete slides

(including this one) and slide content to suit your needs. They obviously

represent a lot of work on our part. In return for use, we only ask the

following:

 If you use these slides (e.g., in a class) in substantially unaltered form,

that you mention their source (after all, we’d like people to use our book!)

 If you post any slides in substantially unaltered form on a www site, that

you note that they are adapted from (or perhaps identical to) our slides, and

note our copyright of this material.

Thanks and enjoy! JFK/KWR

All material copyright 1996-2009

J.F Kurose and K.W. Ross, All Rights Reserved

2: Application Layer 2

Chapter 2: Application layer

 2.1 Principles of
network applications

 2.2 Web and HTTP

 2.3 FTP

 2.4 Electronic Mail
 SMTP, POP3, IMAP

 2.5 DNS

 2.6 P2P Applications

 2.7 Socket programming
with TCP

 2.8 Socket programming
with UDP

Application layer

Transport layer

Network layer

Data Link layer

Physical layer

2: Application Layer 3

Chapter 2: Application Layer

Goals:

 conceptual,
implementation
aspects of network
application protocols

 transport-layer
service models

 client-server
paradigm

 peer-to-peer
paradigm

 learn about protocols
by examining popular
application-level
protocols
 HTTP

 FTP

 SMTP / POP3 / IMAP

 DNS

 programming network
applications

 socket API

2: Application Layer 4

Some network apps

 e-mail

 web

 instant messaging

 remote login

 P2P file sharing

 multi-user network
games

 streaming stored video
clips

 voice over IP

 real-time video
conferencing

 grid computing

 cloud computing

2: Application Layer 5

Network applications: some
terminologies

Process: program running within a host.

 within same host, two processes
communicate using inter-process
communication (defined by OS).

 processes in different hosts communicate
by exchanging messages governed by
application-layer protocol

2: Application Layer 6

Applications and application-layer protocols

Application: communicating,
distributed processes
 e.g., e-mail, Web, P2P file

sharing, instant messaging
 running in end systems

(hosts)
 exchange messages to

implement application

Application-layer protocols
 one “piece” of an app
 define messages

exchanged by apps and
actions taken

 use communication services
provided by lower layer
protocols (TCP, UDP)

application
transport
network
data link
physical

application
transport
network
data link
physical

application
transport
network
data link
physical

2: Application Layer 7

Creating a network app

write programs that
 run on (different) end

systems
 communicate over network

 e.g., web server software
communicates with browser
software

little software written for
devices in network core
 network core devices do

not run user applications

 applications on end systems
allows for rapid app
development, propagation

application
transport
network
data link
physical

application
transport
network
data link
physical

application
transport
network
data link
physical

2: Application Layer 8

Chapter 2: Application layer

 2.1 Principles of
network applications

 2.2 Web and HTTP

 2.3 FTP

 2.4 Electronic Mail
 SMTP, POP3, IMAP

 2.5 DNS

 2.6 P2P file sharing

 2.7 Socket programming
with TCP

 2.8 Socket programming
with UDP

2: Application Layer 9

Application architectures

 Client-server

 Peer-to-peer (P2P)

Hybrid of client-server and P2P

2: Application Layer 10

Client-server architecture

server:

 always-on host
(typically)

 permanent IP address

 server farms for
scaling

clients:
 communicate with server

 may be intermittently
connected

 may have dynamic IP
addresses

 do not communicate
directly with each other

client/server

2: Application Layer 11

Pure P2P architecture

 no always-on server

 arbitrary end systems
directly communicate

 peers are intermittently
connected and change IP
addresses

 example: Gnutella

Highly scalable but
difficult to manage

peer-peer

2: Application Layer 12

Hybrid of client-server and P2P
Skype

 voice-over-IP P2P application
 centralized server: finding address of remote

party:
 client-client connection: direct (not through

server)
Instant messaging

 chatting between two users is P2P
 centralized service: client presence

detection/location
• user registers its IP address with central

server when it comes online
• user contacts central server to find IP

addresses of buddies

2: Application Layer 13

Processes communicating

 Client process: process that initiates
communication

 Server process: process that waits to be
contacted

Applications with P2P architectures have
client processes & server processes

2: Application Layer 14

Sockets

 process sends/receives
messages to/from its
socket

 socket analogous to door
 sending process shoves

message out door

 sending process relies on
transport infrastructure
on other side of door which
brings message to socket
at receiving process

process

TCP with

buffers,

variables

socket

host or

server

process

TCP with

buffers,

variables

socket

host or

server

Internet

controlled

by OS

controlled by

app developer

 API: (1) choice of transport protocol; (2) ability to fix
a few parameters (lots more on this later)

2: Application Layer 15

Addressing processes

 to receive messages,
process must have
identifier

 host device has unique
32-bit IP address

 Q: does IP address of
host on which process
runs suffice for
identifying the
process?

 A: No, many
processes can be
running on same host

 identifier includes both
IP address and port
numbers associated with
process on host.

 Example port numbers:
 HTTP server: 80

 Mail server: 25

 to send HTTP message
to gaia.cs.umass.edu web
server:
 IP address: 128.119.245.12

 Port number: 80

 more shortly…

2: Application Layer 16

App-layer protocol defines

Public-domain protocols:

 defined in RFCs

 allows for interoperability

 eg, HTTP, SMTP

Proprietary protocols:

 e.g., skype

2: Application Layer 17

Mail

reader

Mail

server

Mail

server

Web

broswer

Web

server

ftp

client

ftp

server

App-layer protocol defines
 Types of messages exchanged, eg, request & response

messages

 Syntax of message types: what fields in messages & how fields
are delineated

 Semantics of the fields, ie, meaning of information in fields

 Rules for when and how processes send & respond to messages

2: Application Layer 18

What transport service does an app need?

Data loss
 some apps (e.g., audio) can

tolerate some loss
 other apps (e.g., file

transfer, telnet) require
100% reliable data
transfer

Timing (e2e delay)
 some apps (e.g.,

Internet telephony,
interactive games)
require low delay to be
“effective”

Bandwidth

 some apps (e.g.,
multimedia) require
minimum amount of
bandwidth to be
“effective”

 other apps (“elastic
apps”) make use of
whatever bandwidth
they get

2: Application Layer 19

Transport service requirements of common apps

Application

file transfer

e-mail

Web documents

real-time audio/video

stored audio/video

interactive games

instant messaging

Data loss

no loss

no loss

no loss

loss-tolerant

loss-tolerant

loss-tolerant

no loss

Bandwidth

elastic

elastic

elastic

audio: 5kbps-1Mbps

video:10kbps-5Mbps

same as above

few kbps up

elastic

Time Sensitive

no

no

no

yes, 100’s msec

yes, few secs

yes, 100’s msec

yes and no

2: Application Layer 20

Internet transport protocols services

TCP service:
 connection-oriented: setup

required between client and
server processes

 reliable transport between
sending and receiving process

 flow control: sender won’t
overwhelm receiver

 congestion control: throttle
sender when network
overloaded

 does not provide: timing,
minimum bandwidth
guarantees

UDP service:
 unreliable data transfer

between sending and
receiving process

 does NOT provide:
connection setup,
reliability, flow control,
congestion control, timing,
or bandwidth guarantee

Q: why bother? Why is
there a UDP?

2: Application Layer 21

Internet apps: application, transport protocols

Application

e-mail

remote terminal access

Web

file transfer

streaming multimedia

Internet telephony

Application

layer protocol

SMTP [RFC 2821]

Telnet [RFC 854]

HTTP [RFC 2616]

FTP [RFC 959]

proprietary

(e.g. RealNetworks)

proprietary

(e.g., Vonage,Dialpad)

Underlying

transport protocol

TCP

TCP

TCP

TCP

TCP or UDP

typically UDP

2: Application Layer 22

Chapter 2: Application layer

 2.1 Principles of
network applications
 app architectures

 app requirements

 2.2 Web and HTTP

 2.4 Electronic Mail
 SMTP, POP3, IMAP

 2.5 DNS

 2.6 P2P file sharing

 2.7 Socket programming
with TCP

 2.8 Socket programming
with UDP

2: Application Layer 23

Web and HTTP

First some jargon

 Web page consists of objects

 Object can be HTML file, JPEG image, Java
applet, audio file,…

 Web page consists of base HTML-file which
includes several referenced objects

 Each object is addressable by a URL

 Example URL:

 www.someschool.edu/someDept/pic.gif

host name path name

2: Application Layer 24

HTTP: HyperText Transfer
Protocol

Web’s application layer
protocol

 client/server model

 client: browser that
requests, receives,
“displays” Web objects

 server: Web server
sends objects in
response to requests

 HTTP 1.0: RFC 1945

 HTTP 1.1: RFC 2068

PC running
Explorer

Server
running

Apache Web
server

Mac running
Navigator

2: Application Layer 25

HTTP

Uses TCP:
 client initiates TCP

connection (creates
socket) to server, port
80

 server accepts TCP
connection from client

 HTTP messages
exchanged between
browser (HTTP client)
and Web server (HTTP
server)

 TCP connection closed

HTTP is “stateless”
 server maintains NO

information about
past client requests

Protocols that maintain
“state” are complex!

 past history (state) must
be maintained

 if server/client crashes,
their views of “state” may
be inconsistent, must be
reconciled

aside

2: Application Layer 26

HTTP connections

Nonpersistent HTTP

 At most one object is
sent over a TCP
connection.

Persistent HTTP

 Multiple objects can
be sent over single
TCP connection
between client and
server.

2: Application Layer 27

Nonpersistent HTTP
Suppose user enters URL

www.someSchool.edu/someDepartment/home.index

1a. HTTP client initiates TCP
connection to HTTP server
(process) at
www.someSchool.edu on port 80

2. HTTP client sends HTTP
request message (containing
URL) into TCP connection
socket. Message indicates
that client wants object
someDepartment/home.index

1b. HTTP server at host
www.someSchool.edu waiting
for TCP connection at port 80.
“accepts” connection, notifying
client

3. HTTP server receives request
message, forms response
message containing requested
object, and sends message
into its socket

time

(contains text,

references to 10

jpeg images)

2: Application Layer 28

Nonpersistent HTTP (cont.)

5. HTTP client receives response
message containing html file,
displays html. Parsing html
file, finds 10 referenced jpeg
objects

6. Steps 1-5 repeated for each
of 10 jpeg objects

4. HTTP server closes TCP
connection.

time

2: Application Layer 29

Response time modeling

Definition of RTT: time to send
a small packet to travel from
client to server and back.

Response time:

 one RTT to initiate TCP
connection

 one RTT for HTTP request
and first few bytes of HTTP
response to return

 file transmission time

total = 2RTT+transmit time

time to

transmit

file

initiate TCP

connection

RTT

request

file

RTT

file

received

time time

2: Application Layer 30

Persistent HTTP

Nonpersistent HTTP issues:

 requires 2 RTTs per object

 OS overhead for each TCP
connection

 browsers often open parallel
TCP connections to fetch
referenced objects

Persistent HTTP

 server leaves connection
open after sending
response

 subsequent HTTP messages
between same
client/server sent over
open connection

 client sends requests as
soon as it encounters a
referenced object

 as little as one RTT for all
the referenced objects

2: Application Layer 31

HTTP request message

 two types of HTTP messages: request, response
 HTTP request message:

 ASCII (human-readable format)

GET /somedir/page.html HTTP/1.1

Host: www.someschool.edu

User-agent: Mozilla/4.0

Connection: close

Accept-language:fr

(extra carriage return, line feed)

header
 lines

Carriage return,
line feed

indicates the end
of message

request line
(GET, POST,

HEAD commands)

2: Application Layer 32

HTTP request message: general format

2: Application Layer 33

Uploading “form” input

Post method:

 Web page often
includes “form” input

 Input is uploaded to
server in entity body

URL method:

 Uses GET method

 Input is uploaded in
URL field of request
line:

www.somesite.com/animalsearch?monkeys&banana

2: Application Layer 34

Method types

HTTP/1.0

 GET
 to retrieve any type of

information identified
by the Request-URI.

 POST

 HEAD
 asks server to leave

requested object out of
response

HTTP/1.1

 GET, POST, HEAD

 PUT
 uploads file in entity

body to path specified
in URL field

 DELETE
 deletes file specified in

the URL field

2: Application Layer 35

HTTP response message

HTTP/1.1 200 OK

Connection close

Date: Thu, 06 Aug 1998 12:00:15 GMT

Server: Apache/1.3.0 (Unix)

Last-Modified: Mon, 22 Jun 1998 …...

Content-Length: 6821

Content-Type: text/html

data data data data data ...

status line
(protocol

status code
status phrase)

header
 lines

data, e.g.,
requested
HTML file

2: Application Layer 36

HTTP response status codes

200 OK
 request succeeded, requested object later in this message

301 Moved Permanently
 requested object moved, new location specified later in

this message (Location:)

400 Bad Request
 request message not understood by server

404 Not Found
 requested document not found on this server

505 HTTP Version Not Supported

In first line in server->client response message.

A few sample codes:

2: Application Layer 37

Trying out HTTP (client side) for yourself

1. Telnet to your favorite Web server:

Opens TCP connection to port 80
(default HTTP server port) at cis.poly.edu.
Anything typed in sent
to port 80 at cis.poly.edu

telnet cis.poly.edu 80

2. Type in a GET HTTP request:

GET /~ross/ HTTP/1.1

Host: cis.poly.edu

By typing this in (hit carriage
return twice), you send
this minimal (but complete)
GET request to HTTP server

3. Look at response message sent by HTTP server!

2: Application Layer 38

Cookies: keeping “state”

Many major Web sites
use cookies

Four components:
1) cookie header line in

the HTTP response
message

2) cookie header line in
HTTP request message

3) cookie file kept on
user’s host and managed
by user’s browser

4) back-end database at
Web site

Example:
 Susan access Internet

always from same PC

 She visits a specific e-
commerce site for first
time

 When initial HTTP
requests arrives at site,
site creates:

• a unique ID and

• an entry in backend
database for ID

2: Application Layer 39

Cookies: keeping “state” (cont.)

Susan Amazon

usual http request msg

usual http response +
Set-cookie: 1678

usual http request msg
cookie: 1678

usual http response msg

usual http request msg
cookie: 1678

usual http response msg

cookie-
specific
action

cookie-
spectific

action

server
creates ID

1678 for user

Cookie file

amazon: 1678

ebay: 8734

Cookie file

ebay: 8734

Cookie file

amazon: 1678

ebay: 8734

one week later:

client server

backend
database

2: Application Layer 40

Cookies (continued)

What cookies can bring:

 authorization

 shopping carts

 Recommendations
(personalization)

 user session state (Web e-
mail)

Cookies and privacy:

 cookies permit sites to
learn a lot about you

 you may supply name
and e-mail to sites

aside

How to keep “state”:

 protocol endpoints: maintain state
at sender/receiver over multiple
transactions

 cookies: http messages carry state

2: Application Layer 41

Web caches (proxy server)

 user sets browser:
Web accesses via
cache

 browser sends all
HTTP requests to
cache
 object in cache: cache

returns object

 else cache requests
object from origin
server, then returns
object to client

Goal: satisfy client request without involving origin server

client

Proxy
server

client
origin
server

origin
server

2: Application Layer 42

More about Web caching

 cache acts as both
client and server

 typically cache is
installed by ISP
(university, company,
residential ISP)

Why Web caching?

 reduce response time
for client request

 reduce traffic on an
institution’s access
link.

 Internet dense
(tightly packed) with
caches: enables “poor”
content providers to
effectively deliver
content (but so does
P2P file sharing)

2: Application Layer 43

Caching example (1)

Assumptions
 average object size = 100,000

bits

 avg. request rate from
institution’s browsers to origin
servers = 15/sec

 delay from institutional router
to any origin server and back
to router = 2 sec

Consequences
 utilization on LAN = 15%

 utilization on access link = 100%

 total delay = Internet delay +
access delay + LAN delay

 = 2 sec + minutes + milliseconds

origin
servers

public
 Internet

institutional
network 10 Mbps LAN

1.5 Mbps
access link

institutional
cache

!?

2: Application Layer 44

Caching example (2)

Possible solution

 increase bandwidth of access
link to, say, 10 Mbps

Consequences
 utilization on LAN = 15%

 utilization on access link = 15%

 Total delay = Internet delay +
access delay + LAN delay

 = 2 sec + msecs + msecs

 often a costly upgrade

origin
servers

public
 Internet

institutional
network 10 Mbps LAN

10 Mbps
access link

institutional
cache

2: Application Layer 45

Caching example (3)

Install cache
 suppose hit rate is .4

Consequence
 40% requests will be satisfied

almost immediately

 60% requests satisfied by
origin server

 utilization of access link
reduced to 60%, resulting in
negligible delays (say 10 msec)

 total delay = Internet delay +
access delay + LAN delay

 = .6*2 sec + .6*.01 secs +
milliseconds < 1.3 secs

origin
servers

public
 Internet

institutional
network 10 Mbps LAN

1.5 Mbps
access link

institutional
cache

2: Application Layer 46

Conditional GET: client-side caching

 Goal: DON’T send
object if client has up-
to-date cached version

 client: specify DATE of

cached copy in HTTP request
If-modified-since:

<date>

 server: response contains NO
object if cached copy is up-
to-date:
HTTP/1.0 304 Not

Modified

client server

HTTP request msg
If-modified-since:

<date>

HTTP response
HTTP/1.0

304 Not Modified

object
not

modified

HTTP request msg
If-modified-since:

<date>

HTTP response
HTTP/1.0 200 OK

<data>

object
modified

2: Application Layer 47

Chapter 2: Application layer

 2.1 Principles of
network applications

 2.2 Web and HTTP

 2.3 FTP

 2.4 Electronic Mail
 SMTP, POP3, IMAP

 2.5 DNS

 2.6 P2P file sharing

 2.7 Socket programming
with TCP

 2.8 Socket programming
with UDP

2: Application Layer 48

FTP: the file transfer protocol

 transfer file to/from remote host

 client/server model

 client: side that initiates transfer (either to/from
remote)

 server: remote host

 ftp: RFC 959

 ftp server: port 21

file transfer
FTP

server

FTP
user

interface

FTP
client

local file
system

remote file
system

user
at host

2: Application Layer 49

FTP: separate control, data connections

 FTP client contacts FTP
server at port 21, specifying
TCP as transport protocol

 Client obtains authorization
over control connection

 Client browses remote
directory (e.g., list, dir) by
sending commands over
control connection.

 When server receives a
command for a file transfer
(e.g., get, put), the server
opens 2nd TCP data
connection to client

 After transferring one file,
server closes data
connection.

FTP
client

FTP
server

TCP control connection
port 21

TCP data connection
port 20

 Server opens a second TCP
data connection to transfer
another file.

 Control connection: “out of
band”

 FTP server maintains “state”:
current directory, earlier
authentication

2: Application Layer 50

FTP commands, responses

Sample commands:
 sent as ASCII text over

control channel

 USER username
 PASS password

 LIST return list of file in
current directory

 RETR filename retrieves
(gets) file

 STOR filename stores
(puts) file onto remote
host

Sample return codes
 status code and phrase (as

in HTTP)

 331 Username OK,

password required

 125 data connection

already open;

transfer starting

 425 Can’t open data

connection

 452 Error writing

file

2: Application Layer 51

Chapter 2: Application layer

 2.1 Principles of
network applications

 2.2 Web and HTTP

 2.3 FTP

 2.4 Electronic Mail
 SMTP, POP3, IMAP

 2.5 DNS

 2.6 P2P file sharing

 2.7 Socket programming
with TCP

 2.8 Socket programming
with UDP

2: Application Layer 52

Electronic Mail

Three major components:
 user agents
 mail servers
 simple mail transfer

protocol: SMTP

User Agent
 a.k.a. “mail reader”
 composing, editing, reading

mail messages
 e.g., Eudora, Outlook, elm,

Netscape Messenger
 outgoing, incoming messages

stored on server

user mailbox

outgoing
message queue

mail
server

user
agent

user
agent

user
agent

mail
server

user
agent

user
agent

mail
server

user
agent

SMTP

SMTP

SMTP

2: Application Layer 53

Electronic Mail: mail servers

Mail Servers
 mailbox contains incoming

messages for user

 message queue of outgoing
(to be sent) mail messages

 SMTP protocol between mail
servers to send email
messages

 client: sending mail
server

 “server”: receiving mail
server

mail
server

user
agent

user
agent

user
agent

mail
server

user
agent

user
agent

mail
server

user
agent

SMTP

SMTP

SMTP

2: Application Layer 54

Electronic Mail: SMTP [RFC 2821]

 uses TCP to reliably transfer email message from
client to server, port 25

 direct transfer: sending server to receiving server
 three phases of transfer

 handshaking (greeting)
 transfer of messages
 closure

user
agent

mail
server

mail
server user

agent

1

2 3 4 5
6

2: Application Layer 55

Scenario: Alice sends message to Bob

1) Alice uses UA to compose
message and “to”
bob@someschool.edu

2) Alice’s UA sends message
to her mail server; message
placed in message queue

3) Client side of SMTP opens
TCP connection with Bob’s
mail server

4) SMTP client sends Alice’s
message over the TCP
connection

5) Bob’s mail server places the
message in Bob’s mailbox

6) Bob invokes his user agent
to read message

user
agent

mail
server

mail
server user

agent

1

2 3 4 5
6

2: Application Layer 56

 SYN , destination port=25

 SYN , ACK

 ACK

 Authentication [SYN]

Authentication [RST]

220….

HELO…

ACK

250….

MAIL FROM…

250 OK

RCPT To…

250 OK

Client MTA Server MTA (Mail Transfer Agent)

Continued…

HELO <SP><domain><CRLF>

Client MTA use it to identify itself

250 <Server MTA domain>

MAIL FROM: reversing path

220: service ready

TCP three-way handshaking (IP of Client MTA)

(domain of relaying MTA,

 sender’s mail account)

RECP TO: forwarding path (receiver’s mail account)

Different ports (don’t have the function of authentication now)

2: Application Layer 57

DATA

354…

……

<CR><LF>.<CR><LF>

250…

ACK

…..

…..

…..

ACK

ACK

ACK

Continued…

Client MTA Server MTA

The receiver treats the lines following the “DATA”

packet as mail data from the sender.

354: Start mail input; end with .

Client MTA sends the content of the mail object.

Server MTA replies with “ACK” packet

(IP of relaying MTAs)

(IP of original host)

Client MTA sends the end-of-mail command (.)

250: Requested mail action okay, completed

2 cases:

• Client MTA has other mails to send, go back to “MAIL FROM”

• Client MTA has no mail to send anymore, sends “QUIT” packet

• Server MTA replies with 221 and closes the connection

Example:

2: Application Layer 58

Sample SMTP interaction
 S: 220 hamburger.edu

 C: HELO crepes.fr

 S: 250 Hello crepes.fr, pleased to meet you

 C: MAIL FROM: <alice@crepes.fr>

 S: 250 alice@crepes.fr... Sender ok

 C: RCPT TO: <bob@hamburger.edu>

 S: 250 bob@hamburger.edu ... Recipient ok

 C: DATA

 S: 354 Enter mail, end with "." on a line by itself

 C: Do you like ketchup?

 C: How about pickles?

 C: .

 S: 250 Message accepted for delivery

 C: QUIT

 S: 221 hamburger.edu closing connection

2: Application Layer 59

Try SMTP interaction for yourself:

 telnet servername 25

 see 220 reply from server

 enter HELO, MAIL FROM, RCPT TO, DATA, QUIT
commands

above lets you send email without using email client
(reader)

2: Application Layer 60

SMTP: final words

 SMTP uses persistent
connections

 SMTP requires message
(header & body) to be in 7-
bit ASCII

 SMTP server uses
CRLF.CRLF to determine
end of message

Comparison with HTTP:

 HTTP: pull

 SMTP: push

 both have ASCII
command/response
interaction, status codes

 HTTP: each object
encapsulated in its own
response msg

 SMTP: multiple objects
sent in multipart msg

2: Application Layer 61

Mail message format

SMTP: protocol for
exchanging email msgs

RFC 822: standard for text
message format:

 header lines, e.g.,
 To:

 From:

 Subject:

different from SMTP
commands!

 body
 the “message”, ASCII

characters only

header

body

blank
line

2: Application Layer 62

Message format: multimedia extensions

 MIME: multimedia mail extension, RFC 2045, 2056

 additional lines in msg header declare MIME content
type

From: alice@crepes.fr

To: bob@hamburger.edu

Subject: Picture of yummy crepe.

MIME-Version: 1.0

Content-Transfer-Encoding: base64

Content-Type: image/jpeg

base64 encoded data

.........................

......base64 encoded data

MIME version

method used
to encode data

multimedia data
type, subtype,

parameter declaration

encoded data

2: Application Layer 63

Mail access protocols

 SMTP: delivery/storage to receiver’s server

 Mail access protocol: retrieval from server

 POP: Post Office Protocol [RFC 1939]

• authorization (agent <-->server) and download

 IMAP: Internet Mail Access Protocol [RFC 1730]

• more features (more complex)

• manipulation of stored msgs on server

 HTTP: gmail, Hotmail, Yahoo! Mail, etc.

user
agent

sender’s mail
server

user
agent

SMTP SMTP access
protocol

receiver’s mail
server

2: Application Layer 64

POP3 protocol

authorization phase
 client commands:

 user: declare username

 pass: password

 server responses

 +OK

 -ERR

transaction phase, client:

 list: list message numbers

 retr: retrieve message by
number

 dele: delete

 quit

 C: list
 S: 1 498

 S: 2 912

 S: .

 C: retr 1

 S: <message 1 contents>

 S: .

 C: dele 1

 C: retr 2

 S: <message 1 contents>

 S: .

 C: dele 2

 C: quit

 S: +OK POP3 server signing off

S: +OK POP3 server ready

C: user bob

S: +OK

C: pass hungry

S: +OK user successfully logged on

2: Application Layer 65

POP3 (more) and IMAP

More about POP3

 Previous example uses
“download and delete”
mode.

 Bob cannot re-read e-
mail if he changes
client

 “Download-and-keep”:
copies of messages on
different clients

 POP3 is stateless
across sessions

IMAP

 Keep all messages in
one place: the server

 Allows user to
organize messages in
folders

 IMAP keeps user state
across sessions:
 names of folders and

mappings between
message IDs and folder
name

2: Application Layer 66

Chapter 2: Application layer

 2.1 Principles of
network applications

 2.2 Web and HTTP

 2.3 FTP

 2.4 Electronic Mail
 SMTP, POP3, IMAP

 2.5 DNS

 2.6 P2P file sharing

 2.7 Socket programming
with TCP

 2.8 Socket programming
with UDP

2: Application Layer 67

DNS: Domain Name System

People: many identifiers:
 SSN, name, passport #

Internet hosts, routers:
 IP address (32 bit) -

used for addressing
datagrams

 “name”, e.g.,
gaia.cs.umass.edu - used
by humans

Q: map between IP
addresses and name ?

Domain Name System:
 distributed database

implemented in hierarchy
of many name servers

 application-layer protocol
- to resolve names
(address/name
translation)

2: Application Layer 68

DNS servers

Internet

Domain A

Domain B

Domain C

Domain D

Root Name Servers

2: Application Layer 69

DNS: Domain Name System

Why not centralize DNS?

 single point of failure

 traffic volume

 distant centralized
database

 maintenance

doesn’t scale!

DNS services

 hostname to IP
address translation

 host aliasing
 canonical, alias names

 mail server aliasing

 load distribution
 replicated Web

servers: set of IP
addresses for one
canonical name

2: Application Layer 70

Root DNS Servers

com DNS servers org DNS servers edu DNS servers

poly.edu

DNS servers

umass.edu

DNS servers
yahoo.com

DNS servers
amazon.com

DNS servers

pbs.org

DNS servers

Distributed, Hierarchical Database

Client wants IP for www.amazon.com; 1st approx:

 client queries a root server to find com DNS server

 client queries com DNS server to get amazon.com
DNS server

 client queries amazon.com DNS server to get IP
address for www.amazon.com

2: Application Layer 71

DNS: Root name servers

 contacted by local name server that can not resolve name

 root name server:

 contacts authoritative name server if name mapping not known

 gets mapping

 returns mapping to local name server

 13 root name
servers worldwide

b USC-ISI Marina del Rey, CA

l ICANN Los Angeles, CA

e NASA Mt View, CA

f Internet Software C. Palo Alto,

CA (and 36 other locations)

i Autonomica, Stockholm (plus

28 other locations)

k RIPE London (also 16 other locations)

m WIDE Tokyo (also Seoul,

Paris, SF)

a Verisign, Dulles, VA

c Cogent, Herndon, VA (also LA)

d U Maryland College Park, MD

g US DoD Vienna, VA

h ARL Aberdeen, MD
j Verisign, (21 locations)

2: Application Layer 72

TLD and Authoritative Servers

 Top-level domain (TLD) servers:
 responsible for com, org, net, edu, etc, and all

top-level country domains uk, fr, ca, jp.
 Network Solutions maintains servers for com TLD
 Educause for edu TLD

Authoritative DNS servers:
 organization’s DNS servers, providing

authoritative hostname to IP mappings for
organization’s servers (e.g., Web, mail).

 can be maintained by organization or service
provider

2: Application Layer 73

Local Name Server

 does not strictly belong to hierarchy

 each ISP (residential ISP, company,
university) has one.
 also called “default name server”

 when host makes DNS query, query is sent
to its local DNS server
 acts as proxy, forwards query into hierarchy

2: Application Layer 74

requesting host
cis.poly.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.poly.edu

1

2
3

4

5

6

authoritative DNS server
dns.cs.umass.edu

7
8

TLD DNS server

DNS name
resolution example

 Host at cis.poly.edu
wants IP address for
gaia.cs.umass.edu

iterated query:
 contacted server

replies with name of
server to contact

 “I don’t know this
name, but ask this
server”

2: Application Layer 75

requesting host
cis.poly.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.poly.edu

1

2

4 5

6

authoritative DNS server

dns.cs.umass.edu

7

8

TLD DNS server

3 recursive query:
 puts burden of name

resolution on
contacted name
server

 heavy load?

DNS name
resolution example

2: Application Layer 76

Domain Name Service (DNS)
(cont’d)

DNS protocol runs over UDP and uses port
53.

Used by other application-layer protocols -
- including HTTP, SMTP and FTP for name
translation

Name translation adds an additional delay -
- sometimes substantial -- to the Internet
applications that use DNS

2: Application Layer 77

DNS: caching and updating records

 once name server learns mapping, it caches
mapping

 cache entries timeout (disappear) after some
time

 TLD servers typically cached in local name
servers

• Thus root name servers are not often visited

 update/notify mechanisms under design by IETF
 RFC 2136
 http://www.ietf.org/html.charters/dnsind-charter.html

2: Application Layer 78

DNS records

DNS: distributed db storing resource records (RR)

 Type=NS
 name is domain (e.g.

foo.com)

 value is hostname of
authoritative name
server for this domain

RR format: (name, value, type, ttl)

 Type=A
 name is hostname

 value is IP address

 Type=CNAME
 name is alias name for some

“canonical” (the real) name

 www.ibm.com is really
 servereast.backup2.ibm.com

 value is canonical name

 Type=MX

 value is name of mailserver
associated with name

2: Application Layer 79

DNS protocol, messages

DNS protocol : query and reply messages, both with
same message format

msg header
 identification: 16 bit #

for query, reply to query
uses same #

 flags:

 query or reply

 recursion desired

 recursion available

 reply is authoritative

2: Application Layer 80

DNS protocol, messages

Name, type fields
 for a query

RRs in response
to query

records for
authoritative servers

additional “helpful”
info that may be used

2: Application Layer 81

Host Aliasing

A host with a complicated hostname can
have one or more alias names, e.g.,
 a hostname relay1.west-coast.enterprise.com could

have, say, two aliases such as enterprise.com and
www.enterprise.com

 the hostname relay1.west-coast.enterprise.com is said
to be canonical hostname

2: Application Layer 82

Host Aliasing (cont’d)

Alias hostnames, when present, are
typically more mnemonic than a canonical
hostname.

DNS can be invoked by an application to
obtain the canonical hostname for a
supplied alias hostname as well as the IP
address of the host.

2: Application Layer 83

Mail Server Aliasing

 It is highly desirable that email addresses
be mnemonic, e.g.,
 Bob has an account with Hotmail -

bob@hotmail.com

 the hostname of the Hotmail mail server is
more complicated and much less mnemonic than
simply hotmail.com (e.g., relay1.west-
coast.hotmail.com).

2: Application Layer 84

Mail Server Aliasing (cont’d)

DNS can be invoked by a mail application to
obtain the canonical hostname for a
supplied alias hostname and the IP address
of the host.

DNS permits a company's mail server and
Web server to have identical (aliased)
hostnames, e.g., enterprise.com.

2: Application Layer 85

Inserting records into DNS

 example: new startup “Network Utopia”
 register name networkuptopia.com at DNS registrar (e.g.,

Network Solutions)
 provide names, IP addresses of authoritative name server (primary

and secondary)
 registrar inserts two RRs into com TLD server:

(networkutopia.com, dns1.networkutopia.com, NS)

(dns1.networkutopia.com, 212.212.212.1, A)

 create authoritative server Type A record for
www.networkuptopia.com; Type NS record for
networkutopia.com

 How do people get IP address of your Web site?

2: Application Layer 86

Load Distribution

DNS is used to perform load distribution
among replicated servers, e.g., web
servers.
 Busy sites, such as cnn.com, are replicated over

multiple servers, with each server running on a
different end system, and having a different IP
address.

A set of IP addresses is associated with
one canonical hostname.

2: Application Layer 87

Load Distribution (cont’d)

 The DNS database contains the set of IP
addresses for each hostname.

When clients make a DNS query for a name
mapped to a set of addresses,
 the server responds with the entire set of IP

addresses,

 but rotates the ordering of the addresses
within each reply.

2: Application Layer 88

Load Distribution (cont’d)

A client typically sends its HTTP request
message to the first IP address listed in
the set

DNS rotation distributes the traffic
among all the replicated servers.

DNS rotation also used for email with
multiple mail servers having the same alias
name.

2: Application Layer 89

References

 P. Mockapetris, "Domain Names - Concepts and
Facilities," RFC 1034, Nov. 1987.

 P. Mockapetris, "Domain Names - Implementation
and Specification," RFC 1035, Nov. 1987.

 P. Vixie, S. Thomson, Y. Rekhter, J. Bound,
"Dynamic Updates in the Domain Name System,"
RFC 2136, April 1997.

 http://www.dns.net/dnsrd/docs/
 a nice collection of documents pertaining to DNS

2: Application Layer 90

References (cont’d)

 http://www.isc.org/bind.html

 The Internet Software Consortium provides
many resources for BIND, a popular public-domain
name server for Unix machines

 Paul Albitz and Cricket Liu, “DNS and BIND,”
O'Reilly & Associates, 1993

2: Application Layer 91

Discussions

DNS is not an application with which a user
directly interacts.

 Instead, the DNS provides a core Internet
name-to-address translation function for
user applications and other Internet
software

Much of the "complexity” in the Internet
architecture is located at the "edges" of
the network

2: Application Layer 92

Server Farm and Web Switch

2: Application Layer 93

Introduction

 The Internet, in particular the World Wide
Web, has experienced explosive growth
and continues to extend at an amazing
pace.

 Cluster-based server architecture is a
successful and cost effective alternate to
build a scalable, reliable, and high-
performance Internet server system

2: Application Layer 94

Web servers

FTP

Email

ERP

DNS

 Multiple Servers per
application clustering

 Scalability

 Availability

 Manageability needs

 Service portability

 Transparent to
users

 No service
disruption

Server Environment

2: Application Layer 95

Introduction

 An important issue is “how to
dispatch and route incoming requests
to the server best suited to
respond?”

 Issues ignored by Existing Routing
Schemes
 Session Integrity
 Sophisticated Load Balancing
 Differentiated Services
 Content Deployment

Arrowpoint

2: Application Layer 96

Content-aware Request
Distribution
Advantages
 Increase performance due to improved hit

rates

Able to partition the server’s database
over the different back-end nodes

 Specialized for certain types of requests

2: Application Layer 97

Content-aware Request
Distribution (cont’d)

 Issue of “Content Inspection”
 “read” the content of the requests

 a TCP connection must be established with the
client prior to assigning the request to a back-
end node.

2: Application Layer 98

Web Switch

 To support virtual IP for web service
 network address translation (VIP -> realIP)

 To support content-based switching
 URL switching

 Cookie switching - stateful

 To support server farm
 load dispatching

 Health check

2: Application Layer 99

HTTP Request Examples

GET /sports/baseball/index.shtml HTTP/1.0

Connection: Keep-Alive

User-Agent: Mozilla/4.08 [en] (X11; I; FreeBSD 4.1-Release i386)

Host: www.kimo.com.tw

Accept: image/gif, image/x-xbitmap, image/jpeg, image/png, */*

Accept-Encoding: gzip

Accept-Language: en

Accept-Charset: iso-8859-1,*,utf-8

Cookie: SESSIONID=123456789

2: Application Layer 100

URL Switching, Content
Publishing/Web Hosting
Server load balancing based on requested content
Reduce content replication and management overhead
URL switching is on a per VIP basis
High performance URL parser

Internet

URL Directory
www.domain.com/news real server 1
www.domain.com/weather real server 1
www.domain.com/travel real server 2
www.domain.com/shopping real server 2

Real Server 1

Real Server 2

2: Application Layer 101
Click for next animation

 Users connect to a Virtual IP
Address but actually are
served by multiple Physical
Servers

 Local Load share algorithm –
 Round-Robin

 Least Load first (session count)

 Least traffic first (bytes count)

 Least weighted load (weight +
session count)

 Ping to find the most responsive
host

FastIron Backbone
1

2

3

4

5

6

7

8

FDX

Link/Act

FDX

Link/Act

9

10

11

12

13

14

15

16

FDX

Link/Act

FDX

Link/Act
Power

Console

Link

Activity
Link

Activity

http http

ftp

ftp email

http http http

Server Load Balancing

http http

70% 30%

FTP
POP3

Click for next animation Click for next animation Click for next animation Click for next animation Click for next animation Click for next animation Click for next animation Click for next animation Click for next animation Click for next animation Click for next animation Click for next animation

 HTTP traffic to Servers 1 & 2

 FTP traffic to Servers 2 & 3

 Email to Server 4

2: Application Layer 102

Virtual IP

 Back-end nodes in the
cluster share a
common IP address,
called VIP.

 Each node has its own
unique IP (public or
private) and MAC
address

 client always sees VIP

Web servers

FTP

Email

ERP

DNS

Front-end

Dispatcher

switch

Internet

2: Application Layer 103

HTTP
FTP

HTTP
DNS

FTP
Email

Email
HTTP

Video
FTP

A

B

C

D

E

Server Service

198.121.1.1

Server Farms (Cluster-based
Server Architecture)

 Server Farm looks like one Server with
one IP Address to the world

 Service portability: Service can be
managed independent of Servers

 Mix & Match different Servers: Capacity,
O/S

 Maximum Scalability: Each Server is
utilized to its potential

Internet

Web switch

2: Application Layer 104

ArrowPoint technology hits Cisco
jackpot
May 11, 2000 12:15 PM PDT
 a start-up that builds equipment that speeds delivery of

Web content over the Internet, held a public offering
March 31 that gave the company a market value of about $1
billion based on its opening stock price.

 Then last Friday, networking giant Cisco Systems acquired
the start-up for about $5.7 billion in stock, based on Cisco's
stock price at the time of the deal. That essentially
increased ArrowPoint's value sixfold in just six weeks. Cisco
shares have since dropped.

 Cisco was in desperate need of ArrowPoint's Web switches,
equipment used by e-commerce Web sites and Internet
service providers to manage Net traffic.

 The market is expected to grow from $260 million in 1999
to $828 million by 2002, according to a study by Internet
Research Group.

2: Application Layer 105

Content Delivery Network
(CDN)

Deliver Web-based content from
geographically dispersed servers that sit
on the edge of various networks

Deliver content according to the proximity
of the Web surfer.

 Example
 A Web surfer viewing a Web site on a computer

in California most likely will get content
delivered from servers on the West Coast;

 a Boston viewer would get images from a server
on the East Coast.

2: Application Layer 106

Content distribution networks (CDNs)

 The content providers are
the CDN customers.

Content replication

 CDN company installs
hundreds of CDN servers
throughout Internet

 in lower-tier ISPs, close
to users

 CDN replicates its customers’
content in CDN servers.
When provider updates
content, CDN updates
servers

origin server

in North America

CDN distribution node

CDN server

in S. America CDN server

in Europe

CDN server

in Asia

2: Application Layer 107

CDN example

origin server

 www.foo.com

 distributes HTML

 Replaces:
 http://www.foo.com/sports.ruth.gif

 with

http://www.cdn.com/www.foo.com/sports/ruth.gif

HTTP request for

www.foo.com/sports/sports.html

DNS query for www.cdn.com

HTTP request for

www.cdn.com/www.foo.com/sports/ruth.gif

1

2

3

Origin server

CDNs authoritative

 DNS server

 Nearby

CDN server

CDN company

 cdn.com

 distributes gif files

 uses its authoritative
DNS server to route
redirect requests

2: Application Layer 108

More about CDNs

routing requests
 CDN creates a “map”,

indicating distances
from leaf ISPs and
CDN nodes

 when query arrives at
authoritative DNS
server:
 server determines ISP

from which query
originates

 uses “map” to determine
best CDN server

not just Web pages

 streaming stored
audio/video

 streaming real-time
audio/video
 CDN nodes create

application-layer
overlay network

2: Application Layer 109

Chapter 2: Application layer

 2.1 Principles of
network applications

 2.2 Web and HTTP

 2.3 FTP

 2.4 Electronic Mail
 SMTP, POP3, IMAP

 2.5 DNS

 2.6 P2P file sharing

 2.7 Socket programming
with TCP

 2.8 Socket programming
with UDP

2: Application Layer 110

Pure P2P architecture

 no always-on server

 arbitrary end systems
directly communicate

 peers are intermittently
connected and change IP
addresses

 Three topics:
 File distribution

 Searching for information

 Case Study: Skype

peer-peer

2: Application Layer 111

File Distribution: Server-Client vs P2P

Question : How much time to distribute file
from one server to N peers?

us

u2 d1 d2

u1

uN

dN

Server

Network (with
abundant bandwidth)

File, size F

us: server upload

bandwidth

ui: peer i upload

bandwidth

di: peer i download

bandwidth

*upload: send content out

2: Application Layer 112

File distribution time: server-client

us

u2 d1 d2
u1

uN

dN

Server

Network (with
abundant bandwidth)

F
 server sequentially

sends N copies:
 NF/us time

 client i takes F/di

time to download

increases linearly in N
(for large N)

= dcs = max { NF/us, F/min(di) }
i

Time to distribute F
to N clients using

client/server approach

2: Application Layer 113

File distribution time: P2P

us

u2 d1 d2
u1

uN

dN

Server

Network (with
abundant bandwidth)

F
 server must send one

copy: F/us time

 client i takes F/di time
to download

 NF bits must be
downloaded (aggregate)
 fastest possible upload rate: us + Sui

dP2P = max { F/us, F/min(di) , NF/(us + Sui) } i

2: Application Layer 114

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30 35

N

M
in

im
u
m

 D
is

tr
ib

u
ti
o
n
 T

im
e P2P

Client-Server

Server-client vs. P2P: example

Client upload rate = u, F/u = 1 hour, us = 10u, dmin ≥ us

2: Application Layer 115

P2P Case Study: BitTorrent

tracker: tracks peers
participating in torrent

torrent: group
(100+~1000+) of
peers exchanging
chunks of a file

obtain a sublist

of peers in the torrent

trading
chunks

peer

 P2P file distribution

2: Application Layer 116

BitTorrent (1)

 file divided into 256KB chunks.

 peer joining torrent:

 has no chunks, but will accumulate them over time

 registers with tracker to get list of peers,
connects to subset of peers (“neighbors”)

 while downloading, peer uploads chunks to other
peers.

 peers may come and go

 once peer has entire file, it may (selfishly) leave or
(altruistically) remain

2: Application Layer 117

BitTorrent (2)

Pulling Chunks

 at any given time,
different peers have
different subsets of
file chunks

 periodically, a peer
(Alice) asks each
neighbor for list of
chunks that they have.

 Alice sends requests
for her missing chunks

 rarest first

Sending Chunks: tit-for-tat

 Alice sends chunks to four
neighbors currently
sending her chunks at the
highest rate

 re-evaluate top 4 every
10 secs

 every 30 secs: randomly
select another peer,
starts sending chunks

 newly chosen peer may
join top 4

 “optimistically unchoke”

2: Application Layer 118

BitTorrent: Tit-for-tat
(1) Alice “optimistically unchokes” Bob
(2) Alice becomes one of Bob’s top-four providers; Bob reciprocates

(3) Bob becomes one of Alice’s top-four providers

With higher upload rate,
can find better trading
partners & get file faster!

Distributed Hash Table (DHT)

 The goal is to provide a way of indexing for
information search and update in
distributed database.

DHT = distributed P2P database

Database has (key, value) pairs;
 key: ss number; value: human name (-> peer)

 key: content type; value: IP address (-> content)

 Peers query DB with key (-> search)
 DB returns values that match the key

 Peers can also insert (key, value) peers

Centralized vs. Distributed
Approach
 Early P2P systems such as Napster took

the centralized approach.
Distributed database approach, e.g.,

 Distribute (e.g., randomly) the database across
all the peers; each peer only holds a small
subset of the totality of the pairs.

 Each peer maintains a list of the IP addresses
of all participating peers.

 Send a query to all other peers and the one has
the pairs respond .

 Not scalable!

2: Application Layer 120

Design a P2P database: DHT
Identifiers

Assign integer identifier to each peer in the
range [0,2n-1].
 Each identifier can be represented by n bits.

 Require each key to be an integer in the same
range.

 To get integer keys for contents, hash original
key.
 eg, key = h(“Led Zeppelin IV”)

 This is why they call it a distributed “hash” table

How to assign keys to peers?

 Central issue: (distribute pairs among
peers)
 Assigning (key, value) pairs to peers.

 Rule: assign key to the peer that has the
closest ID.

 Convention in lecture: closest is the
immediate successor of the key.

 Ex: n=4; peers: 1,3,4,5,8,10,12,14;
 key = 13, then successor peer = 14

 key = 15, then successor peer = 1

1

3

4

5

8
10

12

15

Circular DHT (1)

 Each peer only aware of immediate successor and
predecessor.

 “Overlay network” (specifies abstract logical
relationship between peers)

Circle DHT (2)

0001 (1)

0011 (3)

0100 (4)

0101 (5)

1000 (8)
1010 (10)

1100 (12)

1111 (15)

Who’s responsible

for key 1110 (13)?
I am

O(N) messages

on avg to resolve

query, when there

are N peers

1110

1110

1110

1110

1110

1110

Define closest
as immediate
successor

Discussion

 Issue of tradeoff between the number of
neighbors each peer has to track and the
number of messages that the DHT needs
to send to resolve a single query.

Need to refine the design of DHT to keep
the two numbers to an acceptable size.

-> add shortcuts!

2: Application Layer 125

Circular DHT with Shortcuts

 Each peer keeps track of IP addresses of predecessor,
successor, short cuts.

 Reduced from 6 to 2 messages.
 Possible to design shortcuts so O(log N) neighbors, O(log N)

messages in query
 Can significantly reduce the number of messages used to

process a query.

1

3

4

5

8
10

12

15

Who’s responsible

for key 1110?

Peer Churn

 Peer 5 abruptly leaves
 Peer 4 detects; makes 8 its immediate successor; asks 8

who its immediate successor is; makes 8’s immediate
successor its second successor.

 What if peer 13 wants to join?
 (assume it knows peer 1’s (or any) existence in the DHT.

1

3

4

5

8
10

12

15

• A peer can come and go arbitrarily.

• To handle peer churn, require

each peer to know the IP address

of its two successors.

• Each peer periodically pings its
two successors to see if they

are still alive.

2: Application Layer 128

P2P Case study: Skype

 inherently P2P: pairs
of users communicate.

 proprietary
application-layer
protocol (inferred via
reverse engineering)

 hierarchical overlay
with SNs

 Index maps usernames
to IP addresses;
distributed over SNs

Skype clients (SC)

Supernode

(SN)

Skype
login server

2: Application Layer 129

Peers as relays

 Problem when both
Alice and Bob are
behind “NATs”.
 NAT prevents an outside

peer from initiating a call
to insider peer

 Solution:
 Using Alice’s and Bob’s

SNs, Relay is chosen
 Each peer initiates

session with relay.
 Peers can now

communicate through
NATs via relay

2: Application Layer 130

Chapter 2: Summary

 application architectures
 client-server

 P2P

 hybrid

 application service
requirements:
 reliability, bandwidth,

delay

 Internet transport
service model
 connection-oriented,

reliable: TCP

 unreliable, datagrams: UDP

 specific protocols:
 HTTP

 FTP

 SMTP, POP, IMAP

 DNS

 P2P: BitTorrent, Skype

 socket programming

2: Application Layer 131

The end. 

