
Transport Layer 3-1

Chapter 3

Transport Layer

Computer Networking: A

Top Down Approach

5th edition.

Jim Kurose, Keith Ross

Addison-Wesley, April

2009.

A note on the use of these ppt slides:
We’re making these slides freely available to all (faculty, students, readers).

They’re in PowerPoint form so you can add, modify, and delete slides

(including this one) and slide content to suit your needs. They obviously

represent a lot of work on our part. In return for use, we only ask the

following:

 If you use these slides (e.g., in a class) in substantially unaltered form,

that you mention their source (after all, we’d like people to use our book!)

 If you post any slides in substantially unaltered form on a www site, that

you note that they are adapted from (or perhaps identical to) our slides, and

note our copyright of this material.

Thanks and enjoy! JFK/KWR

All material copyright 1996-2009

J.F Kurose and K.W. Ross, All Rights Reserved

Transport Layer 3-2

Chapter 3: Transport Layer

Goals:

understand principles
behind transport
layer services:

multiplexing/demultipl
exing

reliable data transfer

flow control

congestion control

learn about transport
layer protocols in the
Internet:

UDP: connectionless
transport

TCP: connection-oriented
transport

TCP congestion control

Transport Layer 3-3

Chapter 3 outline

3.1 Transport-layer
services

3.2 Multiplexing and
demultiplexing

3.3 Connectionless
transport: UDP

3.4 Principles of
reliable data transfer

3.5 Connection-oriented
transport: TCP

segment structure

reliable data transfer

flow control

connection management

3.6 Principles of
congestion control

3.7 TCP congestion
control

3: Transport Layer 3a-4

Transport Services and Protocols

Network layer service:
data transfer between
end systems

Transport layer: data
transfer between
processes running on
different hosts

Transport layer relies
on, enhances, network
layer services

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

Transport Layer 3-5

Transport services and protocols

provide logical communication
between app processes
running on different hosts

transport protocols run in
end systems

send side: breaks app
messages into segments,
passes to network layer

rcv side: reassembles
segments into messages,
passes to app layer

more than one transport
protocol available to apps

Internet: TCP and UDP

application

transport

network

data link

physical

application

transport

network

data link

physical

3: Transport Layer 3a-6

Internet Transport-layer Protocols

Reliable, in-order unicast delivery (TCP)
connection setup

flow control

congestion control

Unreliable (“best-effort”), unordered unicast or
multicast delivery (UDP)

Services NOT available:
for real-time applications – delay bound requirement

bandwidth guarantees

reliable multicast

Transport Layer 3-7

Chapter 3 outline

3.1 Transport-layer
services

3.2 Multiplexing and
demultiplexing

3.3 Connectionless
transport: UDP

3.4 Principles of
reliable data transfer

3.5 Connection-oriented
transport: TCP

segment structure

reliable data transfer

flow control

connection management

3.6 Principles of
congestion control

3.7 TCP congestion
control

Transport Layer 3-8

Multiplexing/demultiplexing

application

transport

network

link

physical

P1 application

transport

network

link

physical

application

transport

network

link

physical

P2 P3 P4 P1

host 1 host 2
host 3

= process = socket

delivering received segments

to correct socket

Demultiplexing at rcv host:
gathering data from multiple

sockets, enveloping data with

header (later used for

demultiplexing)

Multiplexing at send host:

P5

3: Transport Layer 3a-9

Multiplexing

Web client
host A

Web
server B

Web client
host C

Source IP: C
Dest IP: B

source port: x
dest. port: 80

Source IP: C
Dest IP: B

source port: y
dest. port: 80

port use: Web server

Source IP: A
Dest IP: B

source port: x
dest. port: 80

• Gather data from multiple app
processes

• Envelop data with header
(later used for demultiplexing)

3: Transport Layer 3a-10

application
transport
network

M
P2

application
transport
network

Demultiplexing

TPDU: transport
protocol data unit

receiver

H t

H n

Demultiplexing: delivering
received segments to
correct app layer processes

segment

segment M

application
transport
network

P1
M

M M

P3 P4

segment
header

application-layer
data

3: Transport Layer 3a-11

UDP Datagram Dispatching

3: Transport Layer 3a-12

How demultiplexing works
host receives IP datagrams

each datagram has source
IP address, destination IP
address

each datagram carries 1
transport-layer segment

each segment has source,
destination port number

host uses IP addresses &
port numbers to direct
segment to appropriate
socket

source port # dest port #

32 bits

application
data

(message)

other header fields

TCP/UDP segment format

H t

H n segment

M

Transport Layer 3-13

Connectionless demultiplexing

Create sockets with port
numbers:

DatagramSocket mySocket1 = new

DatagramSocket(12534);

DatagramSocket mySocket2 = new

DatagramSocket(12535);

UDP socket identified by
two-tuple:

(dest IP address, dest port number)

When host receives UDP
segment:

checks destination port
number in segment

directs UDP segment to
socket with that port
number

IP datagrams with
different source IP
addresses and/or source
port numbers directed
to same socket

Transport Layer 3-14

Connectionless demux (cont)

DatagramSocket serverSocket = new DatagramSocket(6428);

Client

IP:B

P2

client

 IP: A

P1 P1 P3

server

IP: C

SP: 6428

DP: 9157

SP: 9157

DP: 6428

SP: 6428

DP: 5775

SP: 5775

DP: 6428

SP provides “return address”

Transport Layer 3-15

Connection-oriented demux

TCP socket identified
by 4-tuple:

source IP address

source port number

dest IP address

dest port number

recv host uses all four
values to direct
segment to appropriate
socket

Server host may support
many simultaneous TCP
sockets:

each socket identified by
its own 4-tuple

Web servers have
different sockets for
each connecting client

non-persistent HTTP will
have different socket for
each request

Transport Layer 3-16

Connection-oriented demux
(cont)

Client
IP:B

P1

client
 IP: A

P1 P2 P4

server
IP: C

SP: 9157

DP: 80

SP: 9157

DP: 80

P5 P6 P3

D-IP:C

S-IP: A

D-IP:C

S-IP: B

SP: 5775

DP: 80

D-IP:C

S-IP: B

Transport Layer 3-17

Connection-oriented demux:
Threaded Web Server

Client

IP:B

P1

client

 IP: A

P1 P2

server

IP: C

SP: 9157

DP: 80

SP: 9157

DP: 80

P4 P3

D-IP:C

S-IP: A

D-IP:C

S-IP: B

SP: 5775

DP: 80

D-IP:C

S-IP: B

Transport Layer 3-18

Chapter 3 outline

3.1 Transport-layer
services

3.2 Multiplexing and
demultiplexing

3.3 Connectionless
transport: UDP

3.4 Principles of
reliable data transfer

3.5 Connection-oriented
transport: TCP

segment structure

reliable data transfer

flow control

connection management

3.6 Principles of
congestion control

3.7 TCP congestion
control

3: Transport Layer 3a-19

UDP: User Datagram Protocol [RFC 768]

“no frills,” “bare bones”
Internet transport
protocol

“Best effort” service, UDP
segments may be

Errored

Lost

Delayed

duplicated or

delivered out of order

Error detection, handling
and recovery by the upper
layer applications

Connectionless:
no handshaking
between UDP
sender, receiver
each UDP segment
handled
independently of
others

Why is there a UDP?

no connection establishment (which can add
delay)

simple: no connection state at sender,
receiver

small segment header

no congestion control: UDP can blast away
as fast as desired

3: Transport Layer 3a-20

3: Transport Layer 3a-21

UDP: more

Header - 8 bytes

Often used for
streaming
multimedia apps

loss tolerant

rate sensitive

other UDP uses
(why?):

DNS (53)

SNMP (161,
162)

source port # dest port #

32 bits

Application
data

(message)

UDP segment format

length checksum

Length, in
bytes of UDP

segment,
including

header

Transport Layer 3-22

UDP checksum

Sender:
treat segment contents
as sequence of 16-bit
integers

checksum: addition (1’s
complement sum) of
segment contents

sender puts checksum
value into UDP checksum
field

Receiver:
compute checksum of
received segment

check if computed checksum
equals checksum field value:

NO - error detected

YES - no error detected.
But maybe errors
nonetheless? More later
….

Goal: detect “errors” (e.g., flipped bits) in transmitted segment

Transport Layer 3-23

Internet Checksum Example
Note

When adding numbers, a carryout from the
most significant bit needs to be added to the
result

Example: add two 16-bit integers

1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0

1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1

wraparound

sum

checksum

3: Transport Layer 3a-24

UDP Datagram Dispatching

3: Transport Layer 3a-25

UDP Ports Assigned

7 Echo

53 DNS

69 TFTP

123 NTP

161 SNMP

162 SNMP-trap

Transport Layer 3-26

Chapter 3 outline

3.1 Transport-layer
services

3.2 Multiplexing and
demultiplexing

3.3 Connectionless
transport: UDP

3.4 Principles of
reliable data transfer

3.5 Connection-oriented
transport: TCP

segment structure

reliable data transfer

flow control

connection management

3.6 Principles of
congestion control

3.7 TCP congestion
control

Transport Layer 3-27

Principles of Reliable data transfer

important in app., transport, link layers

top-10 list of important networking topics!

characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Transport Layer 3-28

Principles of Reliable data transfer

important in app., transport, link layers

top-10 list of important networking topics!

characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Transport Layer 3-29

Principles of Reliable data transfer

important in app., transport, link layers

top-10 list of important networking topics!

characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Transport Layer 3-30

Reliable data transfer: getting started

sender

side

receiver

side

rdt_send(): called from above,

(e.g., by app.). Passed data to

deliver to receiver upper layer

udt_send(): called by rdt,

to transfer packet over

unreliable channel to receiver

rdt_rcv(): called when packet

arrives on rcv-side of channel

deliver_data(): called by

rdt to deliver data to upper

Transport Layer 3-31

Reliable data transfer: getting started

We’ll:

incrementally develop sender, receiver sides of
reliable data transfer protocol (rdt)

consider only unidirectional data transfer
but control info will flow on both directions!

use finite state machines (FSM) to specify
sender, receiver

state

1
state

2

event causing state transition

actions taken on state transition

state: when in this “state”

next state uniquely

determined by next

event

event

actions

Transport Layer 3-32

Rdt1.0: reliable transfer over a reliable channel

underlying channel perfectly reliable
no bit errors

no loss of packets

separate FSMs for sender, receiver:
sender sends data into underlying channel

receiver read data from underlying channel

Wait for

call from

above packet = make_pkt(data)

udt_send(packet)

rdt_send(data)

extract (packet,data)

deliver_data(data)

Wait for

call from

below

rdt_rcv(packet)

sender receiver

Transport Layer 3-33

Rdt2.0: channel with bit errors

underlying channel may flip bits in packet
checksum to detect bit errors

the question: how to recover from errors:
acknowledgements (ACKs): receiver explicitly tells sender
that pkt received OK

negative acknowledgements (NAKs): receiver explicitly
tells sender that pkt had errors

sender retransmits pkt on receipt of NAK

new mechanisms in rdt2.0 (beyond rdt1.0):
error detection

receiver feedback: control msgs (ACK,NAK), rcvr->sender

Transport Layer 3-34

rdt2.0: operation with no errors

Wait for

call from

above

snkpkt = make_pkt(data, checksum)

udt_send(sndpkt)

extract(rcvpkt,data)

deliver_data(data)

udt_send(ACK)

rdt_rcv(rcvpkt) &&

 notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

 isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) &&

 corrupt(rcvpkt)

Wait for

ACK or

NAK

Wait for

call from

below

rdt_send(data)

L

sender FSM

receiver FSM

Transport Layer 3-35

rdt2.0: error scenario

Wait for

call from

above

snkpkt = make_pkt(data, checksum)

udt_send(sndpkt)

extract(rcvpkt,data)

deliver_data(data)

udt_send(ACK)

rdt_rcv(rcvpkt) &&

 notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

 isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) &&

 corrupt(rcvpkt)

Wait for

ACK or

NAK

Wait for

call from

below

rdt_send(data)

L

retx

sender FSM

receiver FSM

3: Transport Layer 3a-36

Stop-and-Wait

Sender sends a packet and waits for its ack before

sending the next one

Transport Layer 3-37

rdt2.1: sender, handles garbled ACK/NAKs

Wait for

call 0 from

above

sndpkt = make_pkt(0, data, checksum)

udt_send(sndpkt)

rdt_send(data)

Wait for

ACK or

NAK 0 udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) ||

isNAK(rcvpkt))

sndpkt = make_pkt(1, data, checksum)

udt_send(sndpkt)

rdt_send(data)

rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt)

&& isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) ||

isNAK(rcvpkt))

rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt)

&& isACK(rcvpkt)

Wait for

 call 1 from

above

Wait for

ACK or

NAK 1

L
L

Transport Layer 3-38

rdt2.1: receiver, handles garbled ACK/NAKs

Wait for

0 from

below

sndpkt = make_pkt(NAK, chksum)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

 not corrupt(rcvpkt) &&

 has_seq0(rcvpkt)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)

 && has_seq1(rcvpkt)
extract(rcvpkt,data)

deliver_data(data)

sndpkt = make_pkt(ACK, chksum)

udt_send(sndpkt)

Wait for

1 from

below

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)

 && has_seq0(rcvpkt)

extract(rcvpkt,data)

deliver_data(data)

sndpkt = make_pkt(ACK, chksum)

udt_send(sndpkt)

rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(ACK, chksum)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

 not corrupt(rcvpkt) &&

 has_seq1(rcvpkt)

rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(ACK, chksum)

udt_send(sndpkt)

sndpkt = make_pkt(NAK, chksum)

udt_send(sndpkt)

Problem?

ACK/NAK

garbled?

Transport Layer 3-39

rdt2.1: discussion

Sender:

seq # added to pkt

two seq. #’s (0,1) will
suffice. Why?

must check if received
ACK/NAK corrupted

twice as many states
state must “remember”
whether “current” pkt
has 0 or 1 seq. #

Receiver:

must check if received
packet is duplicate

state indicates whether
0 or 1 is expected pkt
seq #

note: receiver can not
know if its last
ACK/NAK received OK
at sender

Transport Layer 3-40

rdt2.2: a NAK-free protocol

same functionality as rdt2.1, using ACKs only

instead of NAK, receiver sends ACK for last pkt
received OK

receiver must explicitly include seq # of pkt being ACKed

duplicate ACK at sender results in same action as
NAK: retransmit current pkt

Transport Layer 3-41

rdt2.2: sender, receiver fragments

Wait for

call 0 from

above

sndpkt = make_pkt(0, data, checksum)

udt_send(sndpkt)

rdt_send(data)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) ||

 isACK(rcvpkt,1))

rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt)

&& isACK(rcvpkt,0)

Wait for

ACK

0
sender FSM

fragment

Wait for

0 from

below

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)

 && has_seq1(rcvpkt)

extract(rcvpkt,data)

deliver_data(data)

sndpkt = make_pkt(ACK1, chksum)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

 (corrupt(rcvpkt) ||

 has_seq1(rcvpkt))

udt_send(sndpkt)

receiver FSM

fragment

L

Transport Layer 3-42

rdt3.0: channels with errors and loss

New assumption:
underlying channel can
also lose packets (data
or ACKs)

checksum, seq. #, ACKs,
retransmissions will be
of help, but not enough

Approach: sender waits
“reasonable” amount of
time for ACK
retransmits if no ACK
received in this time

if pkt (or ACK) just delayed
(not lost):

retransmission will be
duplicate, but use of seq.
#’s already handles this

receiver must specify seq
of pkt being ACKed

requires countdown timer

Transport Layer 3-43

rdt3.0 sender

sndpkt = make_pkt(0, data, checksum)

udt_send(sndpkt)

start_timer

rdt_send(data)

Wait

for

ACK0

rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) ||

isACK(rcvpkt,1))

Wait for

call 1 from

above

sndpkt = make_pkt(1, data, checksum)

udt_send(sndpkt)

start_timer

rdt_send(data)

rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt)

&& isACK(rcvpkt,0)

rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) ||

isACK(rcvpkt,0))

rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt)

&& isACK(rcvpkt,1)

stop_timer

stop_timer

udt_send(sndpkt)

start_timer

timeout

udt_send(sndpkt)

start_timer

timeout

rdt_rcv(rcvpkt)

Wait for

call 0from

above

Wait

for

ACK1

L

rdt_rcv(rcvpkt)

L
L

L

3: Transport Layer 3a-44

rdt3.0: Timer-based Retransmission

3: Transport Layer 3a-45

rdt3.0: Timer-based Retransmission

late

3: Transport Layer 3a-46

Error Control and Recovery:
summary (1/7)

For service interfaces that provide “reliable” delivery

Problem 1:

“how to let sender know receiver correctly receives
the data that sender sends?”

 => Need feedback from the receiver
Solution 1.1: Use Positive or Negative
Acknowledgement (ACK)

Problem 2:

“How to distinguish received packets, i.e. packet
retransmission and duplicate packet?”
Solution 3: Packets are numbered

• Sequence number assignment

3: Transport Layer 3a-47

Error Control and Recovery:
summary (2/7)

Problem 3:

 “What happens if packet, ACK/NAK corrupted
or lost?”

• sender doesn’t know what happened at receiver!

Solution 3: Use timer in the presence of error or
hardware malfunction.

Sender starts a timer when transmits a frame out.
• Timeout interval must be properly set.

• At least a round trip time from sender to receiver

• Sum of transmission time from sender to receiver, processing

time delay at receiver, and ack transmission time from receiver

to sender.

3: Transport Layer 3a-48

Error Control and Recovery:
summary – two ways (3/7)

Positive ACK + timer

at sender
P-ACK(n) by

receiver

if P-ACK(n) lost

• Timer (n) goes off at

sender

• Sender retransmits

packet(n)

Negative ACK +
timer at receiver

if P(n) is not received

• Timer (n) goes off

• N-ACK(n) by receiver
• Sender retransmit

packet(n)

3: Transport Layer 3a-49

Error Control and Recovery:
summary – discussions (4/7)

Congestion at receiver
 if Ack(n) is on the way & Timer(n) goes off

 Sender retransmits packet(n)

 Receiver receives duplicate packet(n)

 Receiver discards retransmitted packet(n)

3: Transport Layer 3a-50

Error Control and Recovery: summary
(5/7)

Acknowledgement packets can be transmitted
either via
separate packets (e.g. use “type” field in the
frame header to distinguish them)

 or

Piggybacking
Attach acknowledgement information to the
outgoing data packets, i.e. include an “ack” field in
the packet header
Problem

• May result in variable delays for ack
transmission

3: Transport Layer 3a-51

Error Control and Recovery: summary
– Acknowledgement Packet (6/7)

Advantages
• Use less resources (e.g., bandwidth)
• Less interrupts to local processing unit

“How long should the receiver wait for a
packet onto which to piggyback the ACK?”

 Solution:
• Wait for a fixed amount of time T
• If a new frame to transmit, piggyback the

ack onto it
• Otherwise, send a separate ack packet
• Note T should be determined based on the

traffic characteristics, e.g., RTT.

3: Transport Layer 3a-52

Error Control and Recovery:
summary – Robustness (7/7)

We say a protocol is robust if it works
under all circumstances, such as errored
packets, lost packets, and premature
timeouts or their combinations).

3: Transport Layer 3a-53

Flow Control

3: Transport Layer 3a-54

Stop-and-Wait

• Maximum window size is one

• Sequence number – one bit

• Sender sends a packet and waits for its ack

before sending the next one

Transport Layer 3-55

rdt3.0: stop-and-wait operation

first packet bit transmitted, t =

0

sender receive

r

RTT

last packet bit transmitted,

t = L / R

first packet bit arrives
last packet bit arrives, send

ACK

ACK arrives, send next

packet, t = RTT + L / R

U
sender

=
.008

30.008
= 0.00027

microsec

onds

L / R

RTT + L / R
=

Transport Layer 3-56

Performance of rdt3.0

rdt3.0 works, but performance stinks

ex: 1 Gbps link, 15 ms prop. delay, 8000 bit packet:

 U sender: utilization – fraction of time sender busy sending

U
sender

=
.008

30.008
= 0.00027

microsec

onds

L / R

RTT + L / R
=

 1KB pkt every 30 msec -> 33kB/sec thruput over 1 Gbps link

 network protocol limits use of physical resources!

dsmicrosecon8
bps10

bits8000
9

R

L
dtrans

3: Transport Layer 3a-57

Pipelined protocols

Pipelining: sender allows multiple, “in-flight”, yet-to-
be-acknowledged pkts

range of sequence numbers must be increased

buffering at sender and/or receiver

Two generic forms of pipelined protocols: go-Back-N,
selective repeat

3: Transport Layer 3a-58

Pipelining: increased utilization

first packet bit transmitted, t = 0

sender receiver

RTT

last bit transmitted, t = L / R

first packet bit arrives

last packet bit arrives, send ACK

ACK arrives, send next

packet, t = RTT + L / R

last bit of 2nd packet arrives, send ACK

last bit of 3rd packet arrives, send ACK

U
sender

=
.024

30.008
= 0.0008

microsecon

ds

3 * L / R

RTT + L / R
=

Increase utilization
by a factor of 3!

3: Transport Layer 3a-59

Pipelining: summary

To achieve better efficiency
Allows the sender to transmit up to w packets before
blocked
Multiple outstanding packets

Issues: determine w?
e.g., consider the previous example
500/20=25 -> w=25

w is the maximum number of outstanding unacked
packets

Wrong!

Issue
What happens if a packet (data or ack) in the middle of the
long stream is damaged or lost?

Two approaches: go-back-n & Selective repeat

3: Transport Layer 3a-60

Back

)/(

)/(

RLRTT

RLw
U pipe

waitandstoppipe UwU

3: Transport Layer 3a-61

Basics on Flow Control:
Sliding Window Protocols

Stop-and-wait (one bit) sliding window

Go-back-n

Selective repeat

Note: these methods differ in efficiency,

complexity and buffer requirements.

3: Transport Layer 3a-62
Next

Sliding window

Sequence

number

(range)

Packet

arrivals

Maximum

number of

packets

allowed

To send

(quota)

3: Transport Layer 3a-63

Sliding Window Protocols –
basic idea

Each outbound packet contains a sequence

number, ranging from 0 to some maximum

number (usually 0~ 2n-1 using n-bit field)

Sender maintains a list of consecutive sequence

numbers, corresponding to packets it is permitted

to send that is called sending window.

Receiver also maintains a list of consecutive

sequence numbers, corresponding to packets it is

permitted to accept that is called receiving
window.

3: Transport Layer 3a-64

Sliding Window Scheme

0 1 2 3 i … j …

Outstanding

(unacked)

Maximum window size

N-1 … 0 1

time

Sender

packet sequence num.

Packets marked that have been sent and

are waiting for acknowledgment

The sequence numbers that can be

assigned for any new outbound packets

3: Transport Layer 3a-65

Sender’s Sliding window

front rear

Transport Layer 3-66

Pipelining Protocols

Go-back-N: big picture:
Sender can have up to
N unacked packets in
pipeline
Rcvr only sends
cumulative acks

Doesn’t ack packet if
there’s a gap

Sender has timer for
oldest unacked packet

If timer expires,
retransmit all unacked
packets

Selective Repeat: big pic
Sender can have up to
N unacked packets in
pipeline
Rcvr acks individual
packets
Sender maintains
timer for each
unacked packet

When timer expires,
retransmit only unack
packet

3: Transport Layer 3a-67

Go-Back-N Sliding Window
Protocol

When receiver receives an error packet, it
discards all subsequent packets, i.e. drop
all out-of-sequence packets.

Drawback
Waste bandwidth in high error rate channel

Advantage
Simpler operational complexity for receivers

3: Transport Layer 3a-68

Go-Back-N Sliding Window
Protocol
Sender:

k-bit seq # in pkt header

“window” of up to N, consecutive unack’ed pkts allowed

ACK(n): ACKs all pkts up to, including seq # n - “cumulative ACK”.

may deceive duplicate ACKs (see receiver).

timer for each in-flight pkt.

timeout(n): retransmit pkt n and all higher seq # pkts
in window.

3: Transport Layer 3a-69

GBN in
action

Window

advances

Immediately

RESEND

subsequent unack

outstanding

packets

3: Transport Layer 3a-70

GBN: sender extended FSM
next free seq. num

3: Transport Layer 3a-71

GBN: receiver extended FSM

receiver simple:
ACK-only: always send ACK for correctly-received
pkt with highest in-order seq #

may generate duplicate ACKs
need only remember expectedseqnum

out-of-order pkt:
discard (don’t buffer) -> no receiver buffering!
ACK pkt with highest in-order seq #

3: Transport Layer 3a-72

Go-Back-N Sliding Window
Protocol

Advantage
Simpler operational complexity for receivers

Sender
• One timer (vs. one for each outstanding packet)

Receiver
• No need to buffer out-of-order packets (less buffer

requirement, simple operation)

Drawback
Waste bandwidth in high error rate channel

3: Transport Layer 3a-73

Sliding Window Protocol using
“Selective Repeat”

Receiver is able to accept and buffer all
correctly received, out-of-sequence packets.

Receiver individually acknowledges all correctly
received pkts.

Eventual in-order delivery to upper layer

Algorithm at the receiver
For an out-of-sequence packet, check if falls within the
receiving window.

Check if it is not a duplicate

If both are ok, store the packet in the buffer

3: Transport Layer 3a-74

Sliding Window Protocol using
“Selective Repeat” (cont’d)
Algorithm at the sender

Sender only resends pkts for which ACK not
received

sender timer for each unACKed pkt

Sender window
N consecutive seq #’s

again limits seq #s of sent, unACKed pkts

3: Transport Layer 3a-75

“Selective Repeat” in action

0

1

2

3

4

2

5

Outstanding
Expected

3: Transport Layer 3a-76

Selective repeat:
 dilemma

Example:
seq #’s: 0, 1, 2, 3
window size=3

receiver sees no
difference in two
scenarios!
incorrectly passes
duplicate data as new in
(a)

Q: what relationship
between seq # size
and window size?

 windowSize <=
sequneceNum/2

?

?

3: Transport Layer 3a-77

Selective repeat

data from above :
if next available seq # in
window, send pkt

set a timer for pkt n

timeout(n):
resend pkt n, restart timer

ACK(n) in [sendbase,sendbase+N]:

mark pkt n as received

if n smallest unACKed pkt,
advance window base to
next unACKed seq #

sender

pkt n in [rcvbase, rcvbase+N-1]

send ACK(n)

out-of-order: buffer

in-order: deliver (also
deliver buffered, in-order
pkts), advance window to
next not-yet-received pkt

pkt n in [rcvbase-N,rcvbase-1]

ACK(n)

otherwise:
ignore

receiver

3: Transport Layer 3a-78

To be continued …

