Chapter 3
Transport Layer

A note on the use of these ppt slides:

We’re making these slides freely available to all (faculty, students, readers).
They’re in PowerPoint form so you can add, modify, and delete slides
(including this one) and slide content to suit your needs. They obviously
represent a lot of work on our part. In return for use, we only ask the
following:

U If you use these slides (e.g., in a class) in substantially unaltered form,
that you mention their source (after all, we’d like people to use our book!)

U If you post any slides in substantially unaltered form on a www site, that
you note that they are adapted from (or perhaps identical to) our slides, and
note our copyright of this material.

Thanks and enjoy! JFK/KWR

All material copyright 1996-2009
J.F Kurose and K.W. Ross, All Rights Reserved

CO M PUTER FIFTH EDITION
NETWORKING

A Top-Down Approach

KUROSE « ROSS

Computer Networking: A
Top Down Approach

5t edition.

Jim Kurose, Keith Ross
Addison-Wesley, April
2009.

Transport Layer 3-1

Chapter 3: Transport Layer

Goals:

= understand principles ® learn about transport
behind transport layer protocols in the
layer services: Internet:
= multiplexing/demultipl = UDP: connectionless

exing transport

m reliable data transfer = TCP: connection-oriented
s flow control transport
= congestion control = TCP congestion control

Transport Layer 3-2

Chapter 3 outline

m 3.1 Transport-layer
services

m 3.2 Multiplexing and
demultiplexing

m 3.3 Connectionless
transport: UDP

m 3.4 Principles of
reliable data transfer

m 3.5 Connection-oriented

transport: TCP

m Segment structure
s reliable data transfer

s flow control

= cohnection management

m 3.6 Principles of
congestion control

m 3.7 TCP congestion

control

Transport Layer

3-3

Transport Services and Protocols

m Network layer service: [

data transfer between nefwork 1
end SYSTemS physiccnlE Q) T c;?\;asalgc‘xll(ﬁ
NG 1 network /
m Transport layer: data " N e | [t
transfer between , D— physicd
processes running on : e L

different hosts

application
networ
. & E data link
m Transport layer relies & g Lo

on, enhances, network
layer services

3: Transport Layer 3a-4

Transport services and protocols

application

trans,ort

m provide /Jogical communication
between app processes
running on different hosts

m transport protocols runin
end systems

= send side: breaks app
messages into segments,
passes to network layer

= rcv side: reassembles
segments intfo messages,
passes to app layer

m more than one transport
protocol available to apps

m Internet: TCP and UDP

Transport Layer 3-5

Internet Transport-layer Protocols

m Reliable, in-order unicast delivery (TCP)
m cohnection setup
= flow control
= congestion control

m Unreliable ("best-effort”), unordered unicast or
multicast delivery (UDP)

m Services NOT available:
s for real-time applications - delay bound requirement
s bandwidth guarantees
m reliable multicast

3: Transport Layer 3a-6

Chapter 3 outline

m 3.1 Transport-layer
services

m 3.2 Multiplexing and
demultiplexing

m 3.3 Connectionless
transport: UDP

m 3.4 Principles of
reliable data transfer

m 3.5 Connection-oriented

transport: TCP

m Segment structure
s reliable data transfer

s flow control

= cohnection management

m 3.6 Principles of
congestion control

m 3.7 TCP congestion

control

Transport Layer

3-7

Multiplexing/demultiplexing

- Demultiplexing at rcv host:

delivering received segments
to correct socket

Multiplexing at send host:

gathering data from multiple
sockets, enveloping data with
header (later used for
demultiplexing)

pplication

transport

network

link

=socket <= process
ap_P5tio P3) applicatlon
transpors trangport
network network
link link
< physteal —physical
host 1 host 2

physical

host 3

Transport Layer 3-8

Multiplexing

» Gather data from multiple app
processes

» Envelop data with header
(later used for demultiplexing)

Web client
host C

Source IP: C Source IP: C

Dest IP: B Dest IP: B

source port:y | |source port: x

dest. port: 80 | [dest. port: 80

Source IP: A
. Dest IP: B , Web
Web client =i(r\!) source port: X J server B
host A I\\‘\; dest. port: 80

port use: Web server

3: Transport Layer 3a-9

Demultiplexing

m TPDU: Transport Demultiplexing: delivering
protoco | data unit received segments to
correct app layer processes

receiver

. P3
application-layer
data
segment P1 P2
header

gmeation
segment —[H M || tfansport
[Helsegment]l Aetwork

3: Transport Layer 3a-10

UDP Datagram Dispatching

Port 1 Port 2 Port 3

UDP: Demultiplexing
Based On Port

UDP Datagram arrives

IP Layer

Figure 12.5 Example of demuitiplexing one layer above IP. UDP uses the
UDP destination port number to select an appropriate destination
port for incoming datagrams.

3: Transport Layer 3a-11

How demultiplexing works

m host receives IP datagrams

= each datagram has source
IP address, destination IP

32 bits >

A

address source port #| dest port #
= each datagram carries 1
transport-layer segment other header fields

= each segment has source,
destination port number

m host uses IP addresses & application
port numbers to direct data
segment to appropriate (message)
socket
—Ht| M
Hn [segment TCP/UDP segment format

3: Transport Layer 3a-12

Connectionless demultiplexing

m When host receives UDP

m Create sockets with port
segment:

nhumbers: o
DatagramSocket mySocketl = new = checks Qes’rlna‘non por"r
DatagramSocket (12534) ; humber in SegmenT
DatagramSocket mySocket2 = new m directs UDP segment to
DatagramSocket (12535) ; socket with that port
m UDP socket identified by number |
two-tuple: m IP datagrams with

different source IP
addresses and/or source
port numbers directed
to same socket

(dest IP address, dest port number)

Transport Layer 3-13

Connectionless demux (cont)

DatagramSocket serverSocket = new DatagramSocket (6428);
SP: 6428 SP: 6428
DP: 9157 DP: 5775
SP: 9157 SP: 5775
client DP: 6428 server DP: 6428 Client
IP: A IP:- C IP:B

SP provides “return address”

Transport Layer 3-14

Connhection-oriented demux

m TCP socket identified m Server host may support

by 4-tuple: many simultaneous TCP
m source IP address sockets:
= source port number = each socket identified by
s dest IP address its own 4-tuple
s dest port number m Web servers have
m recv host uses all four different sockets for
values to direct each connecting client
segment to appropriate = non-persistent HTTP will
socket have different socket for

each request

Transport Layer 3-15

Connhection-oriented demux

(cont)

client
IP: A

i I L

SP: 5775

DP: 80

S-IP: B

D-IP:C

/

SP: 9157 SP: 9157
DP: 80 server DP: 80 Client
S-IP: A IP: C S-IP: B IP:B
D-IP:C D-IP:C

Transport Layer 3-16

Connection-oriented demux:
Threaded Web Server

i I L, I
SP: 5775
DP: 80
S-1IP: B
D-IP:C
V4
SP: 9157 SP: 9157
client DP: 80 server DP: 80 Client
IP: A S-IP: A IP: C S-IP: B IP:B
D-IP:C D-1P:C

Transport Layer 3-17

Chapter 3 outline

m 3.1 Transport-layer
services

m 3.2 Multiplexing and
demultiplexing

m 3.3 Connectionless
transport: UDP

m 3.4 Principles of
reliable data transfer

m 3.5 Connection-oriented
transport: TCP
m segment structure
a reliable data transfer

s flow control

= cohnection management

m 3.6 Principles of
congestion control

m 3.7 TCP congestion

control

Transport Layer 3-18

UDP: User Datagram Protocol [RFC 768]

= “no frills," "bare bones" m Connectionless:

Internet transport = no handshaking
protocol between UDP
"Best effort” service, UDP sender, receiver
segments may be = each UDP segment

m Errored handled

. Lost independently of

m Delayed others

m aduplicated or
m aelivered out of order

Error detection, handling
and recovery by the upper
layer applications

3: Transport Layer 3a-19

Why is there a UDP?

m nho connection establishment (which can add
delay)

m simple: no connection state at sender,
receiver

m small segment header

m ho congestion control: UDP can blast away
as fast as desired

3: Transport Layer 3a-20

UDP: more

m Header - 8 bytes

m Often used for
streaming
multimedia apps

= loss tolerant
m rate sensitive

m other UDP uses
(why?):
x DNS (53)

= SNMP (161,
162)

32 bits -

Length, in

source port #| dest port #

bytes of UDP

——*length checksum

segment,
including
header

Application
data
(message)

UDP segment format

3: Transport Layer 3a-21

UDP checksum

Goal: detect “errors” (e.g., flipped bits) in transmitted segment

Sender: Receiver:
= treat segment contents m compute checksum of
as sequence of 16-bit received segment
integers m check if computed checksum
m checksum: addition (1's equals checksum field value:
complement sum) of s NO - error detected
segment confents = YES - no error detected.
m sender puts checksum But maybe errors
value into UDP checksum nonetheless? More later

field

Transport Layer 3-22

Internet Checksum Example

m Note

s When adding numbers, a carryout from the
most significant bit needs to be added to the
result

m Example: add two 16-bit integers

11100110011001210
1101010101010101

wraparound @1011101110111011

sum

1011101110111100
checksum 0100010001000011

Transport Layer 3-23

UDP Datagram Dispatching

Port 1 Port 2 Port 3

UDP: Demultiplexing
Based On Port

UDP Datagram arrives

IP Layer

Figure 12.5 Example of demuitiplexing one layer above IP. UDP uses the
UDP destination port number to select an appropriate destination
port for incoming datagrams.

3: Transport Layer 3a-24

UDP Ports Assigned

Decimal Keyword UNIX Keyword Description
0 - - Reserved
7 ECHO echo Echo
9 DISCARD discard Discard
11 USERS systat Active Users
13 DAYTIME daytime Daytime
15 - netstat Who is up or NETSTAT
17 QUOTE qotd Quote of the Day
19 CHARGEN chargen Character Generator ~ { ECNO
37 TIME time Time
42 NAMESERVER name Host Name Server 53 D N S
43 NICNAME whois Who Is
53 DOMAIN nameserver Domain Name Server 69 TFTP
67 BOOTPS bootps Bootstrap Protocol Serve
68 BOOTPC bootpe Bootstrap Protocol Client 123 N TP
69 TFTP tftp Trivial File Transfer
111 SUNRPC sunrpc Sun Microsystems RPC 161 SN M P
123 NTP ntp Network Time Protocol
161 - snmp SNMP net monitor 162 SN M P-trap
162 - snmp-trap SNMP traps
512 - biff UNIX comsat
513 - who UNIX rwho daemon
514 - syslog system log
525 - timed Time daemon

Figure 12.6 An illustrative sample of currently assigned UDP ports showing
the standard keyword and the UNIX equivalent; the list is not
exhaustive. To the exient possible, other transport protocols that

offer identical services use the same port numbers as UDP.

rt Layer 3a-25

Chapter 3 outline

m 3.1 Transport-layer
services

m 3.2 Multiplexing and
demultiplexing

m 3.3 Connectionless
transport: UDP

m 3.4 Principles of
reliable data transfer

m 3.5 Connection-oriented
transport: TCP
m segment structure
a reliable data transfer

s flow control

= cohnection management

m 3.6 Principles of
congestion control

m 3.7 TCP congestion

control

Transport Layer 3-26

Principles of Reliable data transfer

® important in app., transport, link layers
top-10 list of important networking topics!

sending ‘receiver I
OroOCess Process
1

L()relioble <:hc1hr1(:;-l)j

application
layer

fransport
layer

(a) provided service

m characteristics of unreliable channel will de’rermme
complexity of reliable data transfer protocol (rdt)

Transport Layer 3-27

Principles of Reliable data transfer

® important in app., transport, link layers
top-10 list of important networking topics!

sending receiver I
process I process
| 1

L()relioble c:hcmnel)j

application
layer

transport
layer

Junreliable c:hcmnel)ik

(a) provided service (b) service implementation

m characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Transport Layer 3-28

Principles of Reliable data transfer

® important in app., transport, link layers
top-10 list of important networking topics!

senalngl receiver I
Process process
! 1

. rdt send()
L()relloble c:hcmnel)j =

application
layer

deliver data()

=

S5 reliable data reliable data

@ > fransfer protocol transfer protocol

% O (sending side) (receiving side)

+ udt_ send ()i [packet | [packet| I rdt rev()

Junreliable c:hcmnel)ik

(a) provided service (b) service implementation

m characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Transport Layer 3-29

Reliable data transfer: getting started

rdt send () : called from above, deliver data() : called by
(e.g., by app.). Passed data to rdt to deliver data to upper
deliver to receiver upper layer /
\ rdt_send() data Tdeliver_data ()

sender [relidble data reliable data receiver
ide fransfer profocol transfer protocol id
S (sending side) (receiving side) Slae
udt send ()i packet packet Irdt rcv ()
T—»()unrelicible channel)<T

udt send () : called by rdt, rdt rcv () : called when packet

to transfer packet over arrives on rcv-side of channel
unreliable channel to receiver

Transport Layer 3-30

Reliable data transfer: getting started

we'll:
m incrementally develop sender, receiver sides of
reliable data transfer protocol (rdt)
m consider only unidirectional data transfer
= but control info will flow on both directions!

m use finite state machines (FSM) to specify

sender, receiver
event causing state transition

actions taken on state transition

state: when 1n this “state”
next state uniquely
determined by next

event

Transport Layer 3-31

Rdt1.0: reliable transfer over a reliable channel

m underlying channel perfectly reliable

) rdt_send() Eoilfdeliver data()
m ho bit errors slioble dafa relicble afa
’[rronsger Drgigo;:d fransfer protocol
sending side (receiving side)
| no IOSS Of pac keTS udt_send ():: | packet | | packet | Irdt_rcv)

m separate FSMs for sender, receiver L. (ereiane chonner)4
= Sender sends data into underlying channel
= receiver read data from underlying channel

rdt_send(data) " AWait for
call from
below

Wait for rdt_rcv(packet)

call from
above

extract (packet,data)

packet = make_pkt(data) deliver_data(data)

udt_send(packet)
sender receiver

Transport Layer 3-32

Rdt2.0: channel with bit errors

m underlying channel may flip bits in packet
m checksum to detect bit errors

m the question: how to recover from errors:

m acknowledgements (ACKs): receiver explicitly tells sender
that pkt received OK

m negative acknowledgements (NAKs): receiver explicitly
tells sender that pkt had errors

= sender retransmits pkt on receipt of NAK
m new mechanisms in rdt2.0 (beyond rdtl.0):

m error detection
m receiver feedback: control msgs (ACK,NAK), rcvr->sender

Transport Layer 3-33

rdt2.0: operation with no errors

rdt_send(data)

snkpkt = make pkt(data, checksum)
udt send(sndpkt

rdt_rcv(rcvpkt) &&

Wait for ISNAK((rcvpkt)

call from
above

rdt_rcv(rcvpkt) &&
udt_send(sndpkt) corrupt(rcvpkt)

udt_send(NAK)

. C

Wait for
call from
below

rdt_rcv(rcvpkt) && isACK(rcvpkt)
=
A

sender FSM

rdt rcv(rcvka &&
notcorrupt(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

receiver FSM Transport Layer 3-34

rdt2.0: error scenario

rdt_send(data)

snkpkt = make_pkt(data, checksum)
udt send(sndpkt)

retx

rdt_rcv(rcvpkt) &&
corrupt(rcvpkt)

dt send(NAK

call from
above

. ~ ()
rdt_rcv(rcvpkt) && isACK(rcvpkt) = :
- Wait for
call from
below

A

sender FSM

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

receiver FSM Transport Layer 3-35

Stop-and-Wait

Events A{ Sender Site Network Messages Events At|Receiver Site

Send Packet 1
Receive ACK 1
Send Packet 2 \
Receive Packet 2

Receive ACK 2

Sender sends a packet and walits for its ack before
sending the next one

3: Transport Layer 3a-36

rdt2.1: sender, handles garbled ACK/NAKs

rdt_send(data)

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
ISNAK(rcvpkt))

udt_send(sndpkt)

Wait for
ACK or
NAK O

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& iISACK(rcvpkt)

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& iIsSACK(rcvpkt)

A A
Wait for Wait for
ACK or
rdt_rcv(rcvpkt) && NAK 1
(corrupt(rcvpkt) ||
iSNAK (rcvpkt)) rdt_send(data)
udt_send(sndpkt) sndpkt = make_pkt(1, data, checksum)

udt_send(sndpkt)

Transport Layer 3-37

rdt2.1: receiver, handles garbled ACK/NAKs

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seqO(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
\ sndpkt = make_pkt(ACK, chksum)
. . \\ udt_send(sndpkt)
rdt_rcv(rcvpkt) && (corrupt(revpkt) \ rdt_rcv(rcvpkt) && (corrupt(rcvpkt)
sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)

sndpkt = make_pkt(NAK, chksum) \
udt_send(sndpkt)

rdt_rcv(rcvpkt) && rdt_rcv(rcvpkt) &&

not corrupt(rcvpkt) && (not corrupt(rcvpkt) &&
has_seql(rcvpkt) has seqO(rcvpkt)
sndpkt = make_pkt(ACK, chksum) sndpkt = make_pkt(ACK, chksum)

udt_send(sndpkt
- (sndpkt) rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) udt_send(sndpk?)

&& has_seql(rcvpkt) .
extract(rcvpkt,datay) Problem

deliver_data(data) ACK/NAK
sndpkt = make_pkt(ACK, chksum) garbled?

udt_send(sndpkt)

Transport Layer 3-38

rdt2.1: discussion

Sender: Receiver:
m seq # added to pkt m must check if received
= two seq. #'s (0,1) will packet is duplicate

suffice. Why? = state indicates whether

: : O or 1is expected pkt

m must check if received seq #

AC.K/ NAK corrupted m hote: receiver can noft
m fwice as many states know if its last

= state must "remember” ACK/NAK received OK

whether "current” pkt

Transport Layer 3-39

rdt2.2: a NAK-free protocol

m same functionality as rdt2.1, using ACKs only

m instead of NAK, receiver sends ACK for last pkt
received OK
= receiver must explicitly include seq # of pkt being ACKed

m duplicate ACK at sender results in same action as
NAK: retransmit current pkt

Transport Layer 3-40

rdt2.2: sender, receiver fragments

rdt_send(data)
sndpkt = make_pkt(0, data, checksum)

udt_send(sndpkt) rdt_rcv(rcvpkt) &&

\\\ / \4
it Wait for (corrupt(rcvpkt) ||
alttor i
.......................... call 0 from ACK ISACK{TevpkLl))
.............................. above 0 udt_send(sndpkt)
.. sender FSM
... fragment rdt_rcv(rcvpkt)
... && notcorrupt(rcvpkt)
rdt_rev(revpk) && T && ISATK(revpkt,0)
Comuntievmkd | T A
has_seql(rcvpkt)) ' receiver FSM e
Udt—send(sndpkt) T

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) e
&& has seqgl(rcvpkt)

extract(rcvpkt,data)

deliver_data(data)

sndpkt = make_ pkt(ACK1, chksum)

udt_send(sndpkt) Transport Layer 3-41

rdt3.0: channels with errors andloss

New assumption:
underlying channel can
also lose packets (data
or ACKs)

= checksum, seq. #, ACKs,

retransmissions will be
of help, but not enough

Approach: sender waits

“reasonable” amount of
time for ACK

m retransmits if no ACK
received in this time

m if pkt (or ACK) just delayed
(not lost):

= retransmission will be
duplicate, but use of seq.
#'s already handles this

= receiver must specify seq
of pkt being ACKed

m requires countdown timer

Transport Layer 3-42

rdt3.0 sender

rdt_send(data)

rdt_rcv(rcvpkt) &&

\ sndpkt = make_pkt(0, data, checksum) (corrupt(rcvpkt) ||

\ udt_send(sndpkt)
\ start_timer
—

rdt_rcv(rcvpkt)

A

Wait for
call Ofrom
above

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& iIsACK(rcvpkt,1)

stop_timer

timeout
udt_send(sndpkt) C
start_timer (_/

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
ISACK(rcvpkt,0))

A

ISACK(rcvpkt,1))

A

timeout

udt_send(sndpkt)
start_timer

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& iIsSACK(rcvpkt,0)

stop_timer

Wait for
call 1 from
above

rdt_rcv(rcvpkt)

rdt_send(data)

A

sndpkt = make_pkt(1, data, checksum)
udt_send(sndpkt)
start_timer

Transport Layer

3-43

rdt3.0: Timer-based Retransmission

sender receiver sender receiver
Pkt o
send pki0 Pkt send pki0 S
send ACKO ACK send ACKO
Aﬂ@/ rcv ACKO
o Q\Cﬁ)] send pki1
rcv pktl
ACK send ACK]

rcv pkio
send ACKO

rcvACK :
send pi0=_pki (RS r —— 0
ACK CV kIO \ e pkil
> send ACKO ACK send ACK
[CVACK] o
send pkt0
(a) operation with no loss ‘y
(b) lost packet

3: Transport Layer 3a-44

rdt3.0: Timer-based Retransmission

sender receiver sender receiver
kt
send pkio oV pkio send pki0 0 oV pkio
send ACKO ACK send ACKO
rcv ACKO rcv ACKO
send pki1 send pkil 7]
rcv pktl rCcv kil
(send ACK send ACK
|I’m99(I * ok 1 Hm%ﬂ_-l-resen ©
resend p 1O . rcv pkil .
. (detect duplicate rcvACK (detect duplicate)
ACK] senaAcCt send pktO send ACKT
[CV,
send pki0 e ACKO
ktO
ACK Ve ACK
send ACKO

d) premature timeout

3: Transport Layer 3a-45

Error Control and Recovery:
summary @/7)

m For service interfaces that provide “reliable” delivery

m Problem 1:

m “how to let sender know receiver correctly receives
the data that sender sends?”

=> Need feedback from the receiver

m Solution 1.1: Use Positive or Negative
Acknowledgement (ACK)

m Problem 2:

m “How to distinguish received packets, i.e. packet
retransmission and duplicate packet?”

= Solution 3: Packets are numbered
- Sequence number assignment

3: Transport Layer 3a-46

Error Control and Recovery:
summary (2/7)

m Problem 3:

m "What happens if packet, ACK/NAK corrupted
or lost?"
» sender doesn't know what happened at receiver!

= Solution 3: Use fimer in the presence of error or
hardware malfunction.

m Sender starts a timer when transmits a frame out.
- Timeout interval must be properly set.
from sender to receiver

« Sum of transmission time from sender to receiver, processing
time delay at receiver, and ack transmission time from receiver
to sender.

3: Transport Layer 3a-47

Error Control and Recovery:

summary - two ways (3/7)
m Positive ACK +timer = Negative ACK +

at sender timer at receiver
a P-ACK(n) by m if P(n) is not received
receiver « Timer (n) goes off
if P-ACK(n) lost * N-ACK(n) by receiver
n - retransmit
« Timer (n) goes off at packet(n)

retransmits
packet(n)

3: Transport Layer 3a-48

Error Control and Recovery:
summary - discussions (4/7)

m Congestion at recelver
m If Ack(n) Is on the way & Timer(n) goes off
O retransmits packet(n)
m Receiver receives duplicate packet(n)
m Receiver discards retransmitted packet(n)

3: Transport Layer 3a-49

Error Control and Recovery: summary
(5/7)

Acknowledgement packets can be transmitted
either via

m separate packets (e.g. use "type" field in the
frame header to distinguish them)

or

m Piggybacking

= Attach acknowledgement information to the
outgoing data packets, i.e. include an "ack” field in
the packet header

= Problem

* May result in variable delays for ack
transmission

3: Transport Layer 3a-50

Error Control and Recovery: summary
- Acknowledgement Packet (6/7)

= Advantages
- Use less resources (e.g., bandwidth)
» Less interrupts to local processing unit

€6

s Solution:
- Wait for a fixed amount of time T

* If a new frame to transmit, piggyback the
ack onto it

» Otherwise, send a separate ack packet

* Note T should be determined based on the
traffic characteristics, e.g., RTT.

3: Transport Layer 3a-51

Error Control and Recovery:
summary - Robustness (7/7)

m We say a protocol is robust if it works
under all circumstances, such as errored
packets, lost packets, and premature
timeouts or their combinations).

3: Transport Layer 3a-52

Flow Control

3: Transport Layer 3a-53

Stop-and-Wait

Events At Sender Site

Send Packet 1

Receive ACK 1
Send Packet 2

Receive ACK 2

Network Messages

\
- —
\

=

Events At Receiver Site

Receive Packet 1
Send ACK 1

Receive Packet 2
Send ACK 2

« Maximum window size IS one
« Sequence number — one bit
« Sender sends a packet and waits for its ack
before sending the next one

3: Transport Layer 3a-54

rdt3.0: stop-and-wait operation

sender receive
first packet bit transmitted, t = —so----------------omeeo oo r
last packet bit transmitted, Of]
t=L/R
first packet bit arrives
RTT —last packet bit arrives, send

ACK

ACK arrives, send next}
packet,t=RTT+L/R

U -_ L/R 008

der™ = = 0.00027
sender RTT+L/R 30008

Transport Layer 3-55

Performance of rd+3.0

m rdt3.0 works, but performance stinks
m ex: 1 Gbps link, 15 ms prop. delay, 8000 bit packet:

L 8000bits .
— = =8 microseconds

rans ~ o 10°bps

O U g Utilization — fraction of time sender busy sending

U ___L/R _ 008
sender RTT + L / R 30.008

O 1KB pkt every 30 msec -> 33kB/sec thruput over 1 Gbps link
O network protocol limits use of physical resources!

= 0.00027

Transport Layer 3-56

Pipelined protocols

Pipelining: sender allows multiple, "in-flight", yet-to-
be-acknowledged pkts
m range of sequence numbers must be increased
m buffering at sender and/or receiver

<+— ACK packets

(a) a stop-and-wait protocol in operation (b) a pipelined protocol in operation

m Two generic forms of pipelined protocols: go-Back-N,
selective repeat

3: Transport Layer 3a-57

Pipelining: increased utilization

sender receiver

first packet bit transmitted, t = 0 —fse------------o oo
last bit transmitted, t=L/R

first packet bit arrives
last packet bit arrives, send ACK

— last bit of 2" packet arrives, send ACK
last bit of 3™ packet arrives, send ACK

RTT

ACK arrives, send next|
packet, t=RTT+L/R |

Increase utilization
v / by a factor of 3!

U -_3*L/R _ 04 = 0.0008

Sendef'_ RTT"' L / R - 30.008

3: Transport Layer 3a-58

Pipelining: summary

m To achieve better efficiency

= Allows the sender to transmit up to w packets before
blocked

s Multiple outstanding packets
m Issues: determine w?
= e.g., consider the previous example
= 500/20=25 -> w=25
m w is the maximum number of outstanding unacked
packets
s Wrong!
m Issue

= What happens if a packet (Ida’ra or ack) in the middle of the
long stream is damaged or lost?

m Two approaches: go-back-n & Selective repeat

3: Transport Layer 3a-59

Events At Sender Site Network Messages Events At Receiver Site

Send Packet 1
\ Receive Packet 1

Send Packet 2 Said ACK 1
Send Packet 3 g:ggi“’\% iagket 2
Receive ACK 1 g:ggi\ﬁ: ia:fket 3
Receive ACK 2
Receive ACK 3

U. = @(L/R) U. =w-U
W RTT +(L/R) A

stop—and-wait

3: Transport Layer 3a-60

Basics on Flow Control:
Sliding Window Protocols

m Stop-and-wait (one bit) sliding window
m Go-back-n
m Selective repeat

m Note: these methods differ in efficiency,
complexity and buffer requirements.

3: Transport Layer 3a-61

Packet
arrivals

initial window

Sequence
number

(range)

(a)

window slides —»

Maximum
number of
packets
allowed
To send
(quota)

(b)

Sliding window

3: Transport Layer 32-62

Sliding Window Protocols -
basic idea

m Each outbound packet contains a sequence

num
num

ner, ranging from 0 to some maximum
ner (usually 0~ 2"-1 using n-bit field)

m Sender maintains a list of consecutive sequence

num

ners, corresponding to packets it Is permitted

to send that is called sending window.

m Recelver also maintains a list of consecutive
sequence numbers, corresponding to packets it is
permitted to accept that is called receiving
window.

3: Transport Layer 3a-63

Sliding Window Scheme

packet sequence num.

Sender //////

01112 3| ... |1| ... |J] ... N1JO]J1
.— Outstanding —y
(unacked)

time
— Maximum window size —i

Packets marked that have been sent and
are waiting for acknowledgment
The sequence numbers that can be

assigned for any new outbound packets 3: Transport Layer 3a-64

Sender’s Sliding window

et sent

A OEE S

k|

usable, not

front rear

3: Transport Layer 3a-65

Pipelining Protocols

Go-back-N: big picture:

m Sender can have up to
N unacked packets in
pipeline

m Rcvr only sends
cumulative acks

= Doesn't ack packet if
there's a gap

m Sender has timer for

oldest unacked packet

= If timer expires,
retransmit all unacked
packets

Selective Repeat: big pic

m Sender can have up to
N unacked packets in

pipeline

m Rcvr acks individual

packets

m Sender maintains
timer for each

unacked packet

= When timer expires,
retransmit only unack

packet

Transport Layer 3-66

Go-Back-N Sliding Window
Protocol

m When receiver receives an error packet, it
discards all subsequent packets, i.e. drop
all out-of-sequence packets.

m Drawback

s Waste bandwidth in high error rate channel
m Advantage

= Simpler operational complexity for receivers

3: Transport Layer 3a-67

Go-Back-N Sliding Window
Protocol

Sender:
m k-bit seq # in pkt header
m "window" of up to N, consecutive unack'ed pkts allowed

send_base nhexfsegnum dlready Usable. nof
i i ack’ed yet sent
I VETEHTITO000000 | sceta [rores
+ __ window size —*%
N

m ACK(n): ACKs all pkts up to, including seq # n - "cumulative ACK".
= may deceive duplicate ACKs (see receiver).
m timer for each in-flight pkt.

m f/meout(n): retransmit pkt n and all higher seq # pkts

in window.
3: Transport Layer 3a-68

6 B N | n sender receiver

- send pkiO
action —

send pkf
¥ send pki?2

\(Ea(ss)

send pkT3
(wdalif)

"

Window rcv ACKO
advances send pkt4

rcv ACK]

send pkt5 \

= pki2 fimeout /

S e 2 \
Immediately ‘send oI \

send pki4
RESEND Send PKTS \
subsequent unack \
outstanding
packets

rev pkiQ
rev pk
sen

rd
rcv pkt3, discard

rcv P iscard
sen

rcv pktd, discard
sen

rcv pkiz. deliver
sendCACK2Y
rcv pRISTTeliver

send ACK3

3: Transport Layer 3a-69

GBN: sender extended FSM

next free seg. num
rdt_send(data)

| if (hextseanur < base+N) { |
compute chksum

make_pkt(sndpkt(nextsegnum)) .nextsegnum, data,.chksum)
udt send(sndpki{nextsegnum)

if (base == nextsegnum)
start_fimer
nexXtsegnum = nexisegnum + |
}
else
refuse_data(data)

rdt_rcv(rev_pkt) && notcorrupt(revpkt) timeout
| base = getacknum(rvepkh+1 | start_timer
if (base == nextsegnum) udt_send(sndpkt(base))
sl’rop_’nmer udt_send(sndpkt(bbase+1)
S U s Y A
start_timer udt_send(sndpkt(nextsegnum-1))

3: Transport Layer 3a-70

GBN: receiver extended FSM

rdt_rev(revpkt) &&

notcorrupt(rcvpkt) &&
default hassegnum(rcvpkt expectedsegnum) |
extract(rcvpkt,data)
udt_send(sndpki) J deliver_data(data)
| _make pkt(sndpkt, ACK.expectedsegnum)|

udt_send(sndpkt)

receiver simple:
m ACK-only: always send ACK for correctly-received
pkt with highest in-order seq #
= may generate duplicate ACKs
= heed only remember expectedsegnum
m out-of-order pkt:

m discard (don't buffer) -> no receiver buffering
m ACK pkt with highest in-order seq #

3: Transport Layer 3a-71

Go-Back-N Sliding Window
Protocol

m Advantage

= Simpler operational complexity for receivers

= Sender
* One timer (vs. one for each outstanding packet)

m Receiver

* No need to buffer out-of-order packets (less buffer
requirement, simple operation)

m Drawback
= Waste bandwidth in high error rate channel

3: Transport Layer 3a-72

Sliding Window Protocol using
"Selective Repeat”

m Receiver is able to accept and buffer all
correctly received, out-of-sequence packets

m Receiver individually acknowledges all correctly
received pkts.

m Eventual in-order delivery to upper layer

m Algorithm at the receiver

= For an out-of-sequence packet, check if falls within the
receiving window.

s Check if it is not a duplicate
s If both are ok, store the in the buffer

3: Transport Layer 3a-73

Sliding Window Protocol using
"Selective Repeat” (cont'd)

Algorithm at the sender

m Sender only resends pkts for which ACK not
received
= sender timer for each unACKed pkt
m Sender window
= N consecutive seq #'s
= again limits seq #s of sent, unACKed pkts

3: Transport Layer 3a-74

"Selective Repeat” in action

Outstanding

Expected
pki0 sent
01230456 78¢9 0 _

Pkt revd, delivered, ACKO sent
Pkt | sent ofi234l56789
012314567 8¢9 .
1 sent pktl revd, deliverec

o 01234856789

012314567889

pkt3 sent, window full
012314567 8¢9

pkt3 revd, buffere
0123456787

pktd revd, buffered, ACK4 sent
01234596789

eliver pkis 2,3, 4
Q 3456789
—

6789

ACK]1 rcvd, pkth sent
0142 345067 8¢9

pkth rcvd, delivere
012345

3: Transport Layer 3a-75

Selective repeat:

sender window receiver window

(after receipt)

(after receipt)

dilemma

Example:
m seq#s:0,1,2,3
m window size=3

m receiver sees ho
difference in two
scenarios!

m incorrectly passes
duplicate data as new in

(a)

Q: what relationship
between seq # size
and window size?

windowSize <=
sequneceNum/2

pktO
01230172 ot 2 3Jo1 2
0121301 01123 0]1 2
012|301 2 01250 12
timeout ?
retransmit pktO

pfkto .
012301 —p receive packet

sender window
(after receipt)

with seq number O

receiver window
(after receipt)

pktO
0123012 olt1 2 3lo1 2
0121301 0112301 2
012|301 2 012030 1l2
ACK2
of1 2 3J0 1)
o123 01

receive packet
with seq number O

(0)
3: Transport Layer 3a-76

Selective repeat

—sendernr
data from above :

m if next available seq # in
window, send pkt

m set a timer for pkt n
timeout(n):

m resend pkt n, restart timer
ACK(n) in [sendbase sendbase+N];
= mark pkt n as received

m if nsmallest unACKed pkt,
advance window base to
hext unACKed seq #

— receiver

ka nin [rcvbase, rcvbase+N-1]
m send ACK(n)
m out-of-order: buffer

m in-order: deliver (also
deliver buffered, in-order
pkts), advance window to
hext not-yet-received pkt

ka nin [rcvbase-N,rcvbase-1]
m ACK(n)

otherwise:
® ighore

3: Transport Layer 3a-77

To be continued ... ©

3: Transport Layer 3a-78

