TCP: Overview rrcs: 793 1122, 1323, 2018, 2581

0 point-to-point: 0 full duplex data:
O ohe sender, one receiver o bi-directional data flow
O reliable, in-order byte In same connection
stream: O MSS: maximum segment
size

O nho "message boundaries”
O pipelined:
o TCP congestion and flow
control set window size

3 connection-oriented:

O handshaking (exchange
of control msgs) init's
sender, receiver state

0O send & receive buffers before data exchange

3 flow controlled:
i O sender will not

door

overwhelm receiver

socket
door —

TCP
send buffer

() segment] —» ()

3: Transport Layer 3b-1

TCP segment structure

< 32 bits

source port # | dest port #

counting

Header: 20 bytes ACK sequence humber

by bytes
of data

— —acknowledgement number

(not segments!)

head| not

len |used

UlA PJI}SF rcvr window size

_ }hzel(um , ptr urgent data

bytes
rcvr willing

_—
RST, SYN, FIN:— Op’r/ie'é (variable length)

to accept

connection estab
(setup, teardown /
SCEEE) application

Internet / data
checksum (variable length)

(as in UDP)

3: Transport Layer 3b-2

TCP segment structure

<
<«

32 bits

URG: urgent data
(generally not used)™_

source port #

dest port #

counting

ACK: ACK #

~

sequence humber

by bytes
of data

valid

(not segmentsl)

PSH: push data now
(generally not used)—|

cknowledgement number
__hLZﬁ ZZL A[’JESF Receive window

cheeksum,

Urg data pnter

bytes
rcvr willing

RST SYN, FIN:— |

_—
Op% (variable length)

To accept

conhnection estab
(setup, teardown
commands)

Internet /

checksum
(as in UDP)

/ application

data
(variable length)

3: Transport Layer 3b-3

TCP Connection Management

Recall: TCP sender, Three-way handshake:
receiver establish

Step 1: client end system

“connecfuon" before sends TCP SYN control
exchanging data segment to server
segments O specifies initial seq #
. :/rc\ll:ilgllgllzees:TCP Step 2: server end system
receives SYN, replies with
O seq. #s SYN/ACK control segment
o buffers, flow O ACKs received SYN
control info (e.g. o allocates buffers
RcvWindow) O specifies server's
receiving buffer initial
seq. #

3: Transport Layer 3b-4

Connection Establishment
using Three-Way Handshake

Events At Site 1

Send

Receive segment

Send

Network Messages

Seqzx\>
seq=y, ackSeqg=
ckSeg=y+1

Events At Site 2

Receive SYN segment

Send SYN/ACK

Receive ACK segment

3: Transport Layer 3b-5

TCP Connection Management (cont.)

Closing a connection:

Step 1: client end system
sends TCP FIN control

segment to server

Step 2: server receives
FIN, replies with ACK.
Closes connection, sends
FIN.

client
closing
pCt
%ﬂmg
+
(]
=
Neo closed
Q)
RS
=
closed ™

3: Transport Layer 3b-6

TCP Connection Management (cont.)

Step 3: client receives FIN,
replies with ACK. ,
closing

o Enters “timed wait" - FIN
will respond with ACK
to received FINs

closing
Step 4: server, receives oy EN
ACK. Connection closed.
Note: with small 2= (4) Ack
modification, can handle =
ne) closed

simultaneous FINs. 2

closed

3: Transport Layer 3b-7

TCP Client Lifecycle ,

A/
CLOSED client application
initiates a TCP connection
Wwait 30 seconds
TIME_WAIT SYN_SENT
F Y
— L~
receive FIN receive SYN & ACK
send ACK send ACK
SN~
h 4
FIN_WAIT_2 ESTABLISHED e —
client application
SR SRS initiates close connection

_send nothing T—— FIN_WAIT_1

3: Transport Layer 3b-8

TCP Client Lifecycle (cont'd)

3 Why need to wait for 30 seconds more?

O After received a FIN, client acknowledges
and enters the TIME_WAIT state.

A In the state, client resend the final ACK in
case the ACK is lost.

0 The time spent in the state is
implementation-dependent.

3 The typical value is 30 seconds

3: Transport Layer 3b-9

TCP Server Lifecycle ,

A/
CLOSED server application
e CeiNE AT creates a listen socket
Qﬂd nothing
LAST_ACK LISTEN
A =
receive SYN
send SYN & AC
h 4
CLOSE_WAIT SYN_RCVD

I
K | receive A(h

send nothin
bk | ESTABLISHED L
send ACK

3: Transport Layer 3b-10

TCP seq. #'s and ACKs

Seq. #'s: simple telnet scenario ‘
O byte stream i T
"number"” of first | Host B l{,sb

<

byte in segment’s

data
ACES T
O seq # of next byte hos‘r.ACK?
expected from gl ecePto
other side _y3, date= C', echoes
. _19, RCKE22 back 'C
o cumulative ACK sed

Q: how receiver handles
out-of-order segments oSt ACKs
receipt

O A: TCP spec doesn't of echoed >eq=43, ACK=gy
SGYI - Up to 'C' \
implementor

3: Transport Layer 3b-11

\ 4

time

Initial Sequence Numbers

3 At connection establishment phase, two
sites agree on initial sequence numbers.

3 Initial sequence number is chosen at
random.

3: Transport Layer 3b-12

"Window Advertisement” by

the Receiver

7 Specify how many
additional bytes of
data the receiver is
prepared to accept.

7 Reflect receiver's
current buffer size

O Sender adjusts its
sliding windows size
accordingly

32 bits

source port #

dest port #

sequence number

acknowledgement number

head
len

not
used

U|A|IP|IR|S|F rcvr window size

checksum

ptr urgent data

Options (variable length)

application
data
(variable length)

3: Transport Layer 3b-13

Ports, Connections and
Endpoints

1 TCP uses protocol port numbers to identify
the ultimate destination (processes) within a
machine.

O A port number is an integer number.

0 TCP uses the connection (not the protocol
port) as the fundamental abstraction.

3: Transport Layer 3b-14

Ports, Connections and
Endpoints (cont'd)

3 A TCP connection is identified by a pair of
endpoints.

0 An endpoint is a pair of integers (host_IP
address, TCP_port#)

O e.g., endpoint (128.10.2.3, 21) specifies TCP port
21 on the machine 128.10.2.3 for "ftp" service

O connections:
- (140.112.181.69, 1504) and (128.10.2.3, 21);
- (192.56.132.8, 1184) and (128.10.2.3, 21),...

3: Transport Layer 3b-15

Decimal Keyword UNIX Keyword Description
0 Reserved
1 TCPMUX - TCP Multiplexor
5 RJE . Remote Job Eniry
7 ECHO echo Echo
9 DISCARD discard Discard
i1 USERS systat Active Users
i3 DAYTIME daytime Daytime
15 - neistat Network status prograrmi
17 QUOTE qotd Quote cf the Day
19 CHARGEN chargen Character Generator
20 FTP-DATA fip-data File Transfer Protocol (data)
21 FTP ftp File Transfer Protocol
23 TELNET telnet Terminal Connection
25 SMTP smip Simple Mail Transport Protocol
37 TIME time Time
42 NAMESERVER name Host Name Server
43 NICNAME whois Who Is
53 DOMAIN namaserver Domain Name Server
77 - rjie any private RJE service
79 FINGER finger Finger
93 DCP - Device Contral Protocol
95 SUPDUP supdup SUPDUP Pretocol
101 HOSTNAME hostnames MIC Host Name Server
102 ISO-TSAP iso-tsap ISO-TSAP
103 X400 x400 X.400 Mail Service
104 X400-SND x400-snd X.400 Mail Sending
111 SUNRPC sunmc SIUN Remote Procedure Call
113 AUTH auth Authentication Service
117 UUCP-PATH uucp-path UUCP Path Service
119 NNTP nntp IUSENET News Transfer Protocol
129 PWDGEN - Password Generator Protocol
139 HMETBIOS-5SN - NETBIOS Session Service
160-223 Reserved

Figure 12.14 Examples of currently assigned TCP port numbers. To the ex-
tent possible, protocels like UDP use the same numbers.

TCP reliable data transfer

O TCP creates rdt service on top of IP's unreliable
service

O Pipelined segments
3 Cumulative acks
3 TCP uses single retransmission timer

O Retransmissions are triggered by:
O timeout events
O duplicate acks

3: Transport Layer 3b-17

TCP ACK generation [RFc 1122, RFC 2581]

Event

TCP Recelver action

in-order segment arrival,
no gaps,
everything else already ACKed

delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

in-order segment arrival,
no gaps,
one delayed ACK pending

immediately send single
cumulative ACK

out-of-order segment arrival
higher-than-expect seq. #
gap detected

send duplicate ACK, indicating seq. #
of next expected byte

arrival of segment that
partially or completely fills gap

immediate ACK if segment starts
at lower end of gap

3: Transport Layer 3b-18

TCP: retransmission scenharios

+«——timeout ——

time

lost ACK scenario

premature timeout,
cumulative ACKs

@Hos’r A

.

3J

o
il
5 E
84—
E o
.'_II
o9
S0
g
S
0

(%)
Q
x
N
o)
o
=
@
(7]
oy
- I3
o

Time
3: Transport Layer 3b-19

TCP retransmission scenarios (more)

Cumulative ACK scenario

timeout ——

SendBase
=121

Time 3: Transport Layer 3b-20

TCP Flow Control

-flow control receiver: explicitly
sender won't overrun informs sender of
receiver's buffers by (dynamically changing)

transmitting too much, amount of free buffer
too fast space
O RevWindow field in
RevBuffer = size or TCP Receive Buffer TCP segment ()
RcviWindow = amount of spare room in Buffer sender: keeps the amount

of transmitted,
unACKed data less than

7 7 o most recently received
/ e 7 | ,mpplication RcvWindow

/ process
////
b RevBuffer —————#

-||— RevWindow —||-

data from
1P

receiver buffering
3: Transport Layer 3b-21

TCP Round Trip Time and Timeout

Q: how to set TCP
timeout value?
O better longer than RTT
o RTT varies

3 too short: premature
Timeout

O uhnecessary
retransmissions

3 too long: slow reaction
to segment loss

Q: how to estimate RTT?

7 SampleRTT: measured time from
segment transmission until ACK
receipt

O ighore retransmissions,
cumulatively ACKed segments

O SampleRTT will vary, want

estimated RTT "smoother”

O use several recent

measurements, not just
current SampleRTT

3: Transport Layer 3b-22

TCP Round Trip Time and Timeout

EstimatedRTT = (1- o) *EstimatedRTT + oa*SampleRTT
O Exponential weighted moving average

3 influence of past sample decreases exponentially fast
O typical value: a =0.125

3: Transport Layer 3b-23

Example RTT estimation:

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

300 1 0 ¢

5 25 1 X 1 ﬂ
E a0 | ppl .m...,.ﬂ..,‘ avhe) Au h‘“‘ﬂ"hﬂuﬁl
R s 2 m m e s s e n s o2 s 1

time (seconnds)

—o— SampleRTT —&— Estimated RTT

3: Transport Layer 3b-24

TCP Round Trip Time and Timeout

Setting the timeout

O EstimtedRTT plus "safety margin”
O large variation in EstimatedRTT -> larger safety margin

O first estimate of how much SampleRTT deviates from
EstimatedRTT:

DevRTT = (1-fB)*DevRTT +
B* | SampleRTT-EstimatedRTT |

(typically, P = 0.25)

Then set timeout interval:
TimeoutInterval = EstimatedRTT + 4*DevRTT

3: Transport Layer 3b-25

TCP Congestion Control

3: Transport Layer 3b-26

Principles of Congestion Control

Congestion:

3 informally: "too many sources sending too much
data too fast for network to handle”

o Demand exceeds capacity which lasts for a certain
period of time

0 different from flow control!
O manifestations:
O lost packets (buffer overflow at routers)
0 long delays (queueing in router buffers)
3 a top-10 problem!

3: Transport Layer 3b-27

Causes/costs of congestion: scenario 1

Host A A
Ain - original data out

3 two senders, two
receivers (two
connections Host 8
sharing a link)

3 one router,
infinite buffers

[no retransmission

unlimited shared
output link buffers

O large delays

cro4 |
g when congested
&8 © E O maximum
, achievable
i i throughput
C/2 C/2
A'ih / A‘in /

Per-connection throughput 3: Transport Layer 3b-28

Causes/costs of congestion: scenario 2

3 one router, finite buffers
7 sender retransmission of lost packet

Host A A, original A
data
Ay, - original data, plus
retransmitted data
(offered load)

finite shared output
link buffers

out

3: Transport Layer 3b-29

kout

Causes/costs of congestion: scenario 2

3 always:), = Kout (goodput, no loss) (vs. throughput)
in

3 “perfect” retransmission only when loss:)" >)

out

in /
O retransmission of delayed (not lost) packet makes }Lin larger

(than perfect case) for same ko

Rf2 f----mmommmmmmnooeeee :

, R/2
7\‘in

a.

}‘out

R/2

R/3

“costs” of congestion:
0 more work (retrans) for given "goodput”
O unneeded retransmissions: link carries multiple copies of pkt

ut

’ R/2
7\‘in

b. Retx (1/3 of
offered load)

R/2

, R/2
)"in

c. Premature timeout
& unnecessary retx
(one retx per pkt)

3: Transport Layer 3b-30

Causes/costs of congestion: scenario 3

3 four senders Q: what happens as kl
and A increase ?

3 multihop paths
3 timeout/retransmit

Host A

B—

N

A, - original data

A', » original data, plus
retransmitted data

finite shared output

Host B

7

link bufre

3: Transport Layer 3b-31

Causes/costs of congestion: scenario 3

C/2

5
QO
<<

k!
N
Another "cost” of congestion:

3 when packet dropped, any upstream transmission
capacity used for that packet was wasted!

3: Transport Layer 3b-32

Two Common Approaches towards
congestion control

#1. End-to-end congestion control:
3 No explicit feedback from network

3 congestion inferred from end-system observed
loss, delay

O approach taken by TCP

3: Transport Layer 3b-33

Two Common Approaches towards
congestion control

#:2: Network-assisted congestion control:

3 routers provide feedback to end systems

0 single bit indicating congestion (SNA, DECbit,
TCP/IP ECN, ATM)

O explicit rate sender should send at

3: Transport Layer 3b-34

TCP Congestion Control

3 Slow start
3 Congestion avoidance

3: Transport Layer 3b-35

TCP Slow Start
(1/3)

7 When connection
begins, increase rate
exponentially until
first loss event:

O Double cwnd every RTT

O done by incrementing
cwnd for every ACK

received
7 Summary: initial rate
is slow but ramps up
exponentially fast

-> PROBE |
network’s maximum “throughput™!

exponential “I“e
iIncrease

3: Transport Layer 3b-36

TCP Slow-Start (2/3)

3 To get data flowing there must be acks to clock
out packets; but to get acks there must be data
flowing.

3 Maintain a per connection state variable in the
sender — “congestion window” cwnd

7 "When to enter Slow-Start Phase?”

O When a connection begins
O After a timeout

3: Transport Layer 3b-37

TCP Slow Start (3/3)

3 Algorithm —

O When starting or restarting after a loss, set
cwnd=1 packet.

O Each time an ACK is received, cwnd Is incremented by
one segment size, i.e. one ack for each new data,

cwnd =cwnd+1.

O When sending, send the
min(receiver’s_advtiseWin, cwnd)

O cwnd is maintained in bytes.
O The segment size is announced by the receiver.

3: Transport Layer 3b-38

Congestion Avoidance

0 Congestion is indicated by a fimeout or the
reception of three duplicate ACKs.

1 The goal is to avoid increasing the window
size too quickly and causing additional
congestion.

3: Transport Layer 3b-39

Congestion Avoidance Algorithm

3 Slow start phase

o When a connection begins: cwnd is one segment and
ssthresh (slow start threshold) is 65,535 bytes.

o When congestion occurs, sst/iresh=cwnd/Z, cwnd=1

3 Once cwnd=ssthresh, the connection enters
the congestion avoidance phase.

O On each ack for new data, cwnd=cwnd+1/cwnd
(additive increase)

o When sending, send the min(receiver’s
AdvertiseWinow, cwnd)

3: Transport Layer 3b-40

Additive increase

20 —
cwnd

(segments) 18 — Slow Start ‘

Congestion Avoidance |,.

16 —-ssthresh
14 —
12 —
10 —

Additive
Increase

< Visualization of slow start and congestion avoidance.

I I |
5 6 7
Round-trip times

)-41

Duplicate ACKs

O If there are less than 3 duplicate ACKs, it
is assumed that there is just a reordering
of the segments.

O If 3 or more duplicate ACKs are received
inarow, it is a sfrong indication that a
segment has been lost.

O Fast Retransmit and Fast Recovery
-> TCP-tahoe and TCP-reno

3: Transport Layer 3b-42

Fast Retransmit

3 When 3 duplicate ACKs are received, a
retransmission is performed without
waiting for a retransmission timer to
expire.

0 ssthresh=cwnd/2 and cwnd = 1; (entering
Slow Start phase)

7 Retransmit the missing segment.

3: Transport Layer 3b-43

TCP Tahoe

cwnd =cwnd + 1

Retransmit the lost packet

Ti y/\perAC

imeo .

' — Three duplicate ACKs
ssthregh = cwnd /2 5|0W Start) ssthresh = cwnd /2 ”
cwnd =1 ownd = 1

cwnd == ssthresh

Timeout
ssthresn\= cwnd /2
cwnd =1

Three dudplicate ACKSs
ssthreésh = cwnd /2
wnd =1

cwnd += 1/cwnd per ACK

3: Transport Layer 3b-44

TCP Tahoe

JAfter fast retransmit, goes to "slow-
start” phase to probe the network
again.

1 To avoid congest the network.

3: Transport Layer 3b-45

Fast Recovery

0 Immediately after fast retransmit, instead
of entering slow start, congestion
avoidance is performed.

0 To boot up throughput

O ssthresh=cwnd/2; cwnd =ssthresh + 3
segments

3 Each time an ACK or a duplicate ACK
arrives, increment cwnd by the segment
size cwnd++,

3 Allow to transmit new packet

3: Transport Layer 3b-46

Fast Recovery (cont'd)

7 When the next ACK arrives that
acknowledges the lost data,

O set cwnd to ssthresh
O enter congestion avoidance phase

3: Transport Layer 3b-47

TCP Reno

cwnd =cwnd + 1

per ACK
) Three duplicate ACK§-
ssthresh = cwnd /2

cwnd = sshresh + 3

Timeo

ssthrem Slow Start
cwnd =1 ‘

cwnd =ssthresh

Retransmit

Timeou
the lost packet

ssthresh

cwnd /2

cwnd =1 Three duglicate ACKSs
ssthr = cwnd /2
cynd = ssthresh + 3 -
Recovered the lost packe
cwnd = ssthresh cwnd =cwnd + 1

cwnd = cwnd + 1/cwnd

per ACK per ACK

3: Transport Layer 3b-48

TCP-Reno: Congestion Window

Size
(1) After every new acknowledgment

o

If (CWND < SSTHRESH) o :
° Congestion
CWND « CWND +1 avoidance
else O

@)
CWND <« CWND + 1/CWND
(2) Upon RTO (retransmission timeout)

_ 0o° SSTHRESH «— CWND/2
Begin of
slow CWND < 1

Slo (3) When NDUP (# of duplicate ACKs) exceeds 3

e ® o° SSTHRESH « CWND/2
fast CWND « CWND/2 + 3
recOvery

3: Transport Layer 3b-49

Summary of TCP congestion control:
additive increase, multiplicative decrease
3 Approach: increase transmission rate (window size),
probing for usable bandwidth, until loss occurs

O additive increase. increase CongWin by 1 MSS
every RTT until loss detected

o multiplicative decrease: cut CongWin in half after
loss

24 Kbytes —

Saw tooth
behavior: probing
for bandwidth

16 Kbytes —

8 Kbytes —

congestion window size

time

3: Transport Layer 3b-50

Summary of TCP Congestion

Control: details

0 sender limits tfransmission:
LastByteSent-LastByteAcked
< CongWin

3 Roughly,

How does sender

CongWin
RTT

rate = Bytes/sec

0 CongWin is dynamic, function
of perceived network
conhgestion

perceive congestion?

7 loss event = timeout or
3 duplicate acks

7 TCP sender reduces
rate (CongWin) after
loss event

three mechanisms:

o AIMD
o slow start

O conservative after
timeout events

3: Transport Layer 3b-51

TCP throughput

7 What's the average throughout of TCP as a
function of window size and RTT?

O Ignore slow start
7 Let W be the window size when loss occurs.
3 When window is W, throughput is W/RTT

3 Just after loss, window drops to W/2,
throughput to W/2RTT.

3 Average throughout: .75 W/RTT

3: Transport Layer 3b-52

Competition of TCP connection
with UDP flow

1 Sender 1 (140.112.8.162)5 1.8 MbpsHy#E % H, TCP
traffic

1 20F)1% Sender 2 (140.112.10.177)F L8 MbpsHy#EfE
i%HUDP traffic

3 The buffer space is 100KB for both queues. There
is no packet drop.

J After UDP traffic starts, TCP throughput drops
to less than 2Mb - UDP has the rest -

0 Possible cause: Receiver (140.112.9.165) fails to
send ACKs to Sender 1 causing Sender 1L/ Ry8&4:
packet loss - AL ftwindow sizezf[% @ {5 AR
RN

3: Transport Layer 3b-53

Competition of TCP connection
with UDP flow (cont'd)

140.112.9.165
8 — - = 14011210177
- == 140,112 8162
- .- - 1401129178
(=1
=]
=
L
g
g
|—
2_
n_
[[[[]
1] 20 4

Time (sec)

3: Transport Layer 3b-54

The end. ©

3: Transport Layer 3b-55

Homework #5

Chapter 3
JR5, R6, R10, R11, R14, P2, P5, P9, P12.

3: Transport Layer 3b-56

Homework #6

Chapter 3
J P15, P16, P24, P32, D1

3: Transport Layer 3b-57

