
3: Transport Layer 3b-1

TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581

 full duplex data:
 bi-directional data flow

in same connection

 MSS: maximum segment
size

 connection-oriented:
 handshaking (exchange

of control msgs) init‟s
sender, receiver state
before data exchange

 flow controlled:
 sender will not

overwhelm receiver

 point-to-point:
 one sender, one receiver

 reliable, in-order byte
stream:
 no “message boundaries”

 pipelined:
 TCP congestion and flow

control set window size

 send & receive buffers

socket

door

TCP

send buffer

TCP

receive buffer

socket

door

segment

application

writes data
application

reads data

3: Transport Layer 3b-2

TCP segment structure

source port # dest port #

32 bits

application
data

(variable length)

sequence number

acknowledgement number

rcvr window size

ptr urgent data checksum

F S R P A U
head
len

not
used

Options (variable length) RST, SYN, FIN:
connection estab
(setup, teardown

commands)

ACK

bytes
rcvr willing
to accept

Internet
checksum

(as in UDP)

counting
by bytes
of data
(not segments!)

(*)

Header: 20 bytes

3: Transport Layer 3b-3

TCP segment structure

source port # dest port #

32 bits

application
data

(variable length)

sequence number

acknowledgement number

Receive window

Urg data pnter checksum

F S R P A U
head
len

not
used

Options (variable length)

URG: urgent data
(generally not used)

ACK: ACK #
valid

PSH: push data now
(generally not used)

RST, SYN, FIN:
connection estab
(setup, teardown

commands)

bytes
rcvr willing
to accept

counting
by bytes
of data
(not segments!)

Internet
checksum

(as in UDP)

3: Transport Layer 3b-4

TCP Connection Management

Recall: TCP sender,
receiver establish
“connection” before
exchanging data
segments

 initialize TCP
variables:

 seq. #s

 buffers, flow
control info (e.g.
RcvWindow)

Three-way handshake:

Step 1: client end system
sends TCP SYN control
segment to server

 specifies initial seq #

Step 2: server end system
receives SYN, replies with
SYN/ACK control segment

 ACKs received SYN

 allocates buffers

 specifies server‟s
receiving buffer initial
seq. #

3: Transport Layer 3b-5

Network Messages

Events At Site 2 Events At Site 1

 seq=x

Receive SYN segment

seq=y, ackSeq=x+1

Receive SYN + ACK segment

ackSeq=y+1

Receive ACK segment

Connection Establishment
using Three-Way Handshake

Send SYN

Send SYN/ACK

Send ACK

3: Transport Layer 3b-6

TCP Connection Management (cont.)

Closing a connection:

Step 1: client end system
sends TCP FIN control

segment to server

Step 2: server receives
FIN, replies with ACK.
Closes connection, sends
FIN.

client server

closing

closing

closed

ti
m

e
d
 w

ai
t

closed

3: Transport Layer 3b-7

TCP Connection Management (cont.)

Step 3: client receives FIN,
replies with ACK.

 Enters “timed wait” -
will respond with ACK
to received FINs

Step 4: server, receives
ACK. Connection closed.

Note: with small
modification, can handle
simultaneous FINs.

client server

closing

closing

closed

ti
m

e
d
 w

ai
t

closed

3: Transport Layer 3b-8

TCP Client Lifecycle

3: Transport Layer 3b-9

TCP Client Lifecycle (cont‟d)

Why need to wait for 30 seconds more?

After received a FIN, client acknowledges
and enters the TIME_WAIT state.

 In the state, client resend the final ACK in
case the ACK is lost.

 The time spent in the state is
implementation-dependent.

 The typical value is 30 seconds

3: Transport Layer 3b-10

TCP Server Lifecycle

3: Transport Layer 3b-11

TCP seq. #‟s and ACKs
Seq. #‟s:

 byte stream
“number” of first
byte in segment‟s
data

ACKs:
 seq # of next byte

expected from
other side

 cumulative ACK
Q: how receiver handles

out-of-order segments
 A: TCP spec doesn‟t

say, - up to
implementor

Host A Host B

User
types

„C‟

host ACKs
receipt

of echoed
„C‟

host ACKs
receipt of
„C‟, echoes

back „C‟

time

simple telnet scenario

3: Transport Layer 3b-12

Initial Sequence Numbers

At connection establishment phase, two
sites agree on initial sequence numbers.

 Initial sequence number is chosen at
random.

“Window Advertisement” by
the Receiver
 Specify how many

additional bytes of
data the receiver is
prepared to accept.

 Reflect receiver‟s

current buffer size

 Sender adjusts its
sliding windows size
accordingly

3: Transport Layer 3b-13

source port # dest port #

32 bits

application
data

(variable length)

sequence number

acknowledgement number

rcvr window size

ptr urgent data checksum

F S R P A U
head
len

not
used

Options (variable length)

3: Transport Layer 3b-14

Ports, Connections and
Endpoints

 TCP uses protocol port numbers to identify
the ultimate destination (processes) within a
machine.
 A port number is an integer number.

 TCP uses the connection (not the protocol
port) as the fundamental abstraction.

3: Transport Layer 3b-15

Ports, Connections and
Endpoints (cont‟d)

A TCP connection is identified by a pair of
endpoints.

An endpoint is a pair of integers (host_IP
address, TCP_port#)
 e.g., endpoint (128.10.2.3, 21) specifies TCP port

21 on the machine 128.10.2.3 for “ftp” service

 connections:
• (140.112.181.69, 1504) and (128.10.2.3, 21);

• (192.56.132.8, 1184) and (128.10.2.3, 21),...

TCP reliable data transfer

 TCP creates rdt service on top of IP‟s unreliable
service

 Pipelined segments

 Cumulative acks

 TCP uses single retransmission timer

 Retransmissions are triggered by:
 timeout events

 duplicate acks

3: Transport Layer 3b-17

3: Transport Layer 3b-18

TCP ACK generation [RFC 1122, RFC 2581]

Event

in-order segment arrival,

no gaps,

everything else already ACKed

in-order segment arrival,

no gaps,

one delayed ACK pending

out-of-order segment arrival

higher-than-expect seq. #

gap detected

arrival of segment that

partially or completely fills gap

TCP Receiver action

delayed ACK. Wait up to 500ms

for next segment. If no next segment,

send ACK

immediately send single
cumulative ACK

send duplicate ACK, indicating seq. #

of next expected byte

immediate ACK if segment starts

at lower end of gap

3: Transport Layer 3b-19

TCP: retransmission scenarios

Host A

loss

ti
m

e
ou

t

time

lost ACK scenario

Host B

X

Host A

S
e
q=

9
2

 t
im

e
ou

t

time

premature timeout,
cumulative ACKs

Host B

S
e
q=

10
0

 t
im

e
ou

t

3: Transport Layer 3b-20

TCP retransmission scenarios (more)

Host A

loss

ti
m

e
ou

t

Cumulative ACK scenario

Host B

X

time

SendBase
= 121

3: Transport Layer 3b-21

TCP Flow Control

receiver: explicitly
informs sender of
(dynamically changing)
amount of free buffer
space

 RcvWindow field in
TCP segment (*)

sender: keeps the amount
of transmitted,
unACKed data less than
most recently received
RcvWindow

sender won‟t overrun
receiver‟s buffers by

transmitting too much,
 too fast

flow control

receiver buffering

RcvBuffer = size or TCP Receive Buffer

RcvWindow = amount of spare room in Buffer

3: Transport Layer 3b-22

TCP Round Trip Time and Timeout

Q: how to set TCP
timeout value?

 better longer than RTT

 RTT varies

 too short: premature
timeout

 unnecessary
retransmissions

 too long: slow reaction
to segment loss

Q: how to estimate RTT?
 SampleRTT: measured time from

segment transmission until ACK
receipt

 ignore retransmissions,
cumulatively ACKed segments

 SampleRTT will vary, want
estimated RTT “smoother”

 use several recent
measurements, not just
current SampleRTT

3: Transport Layer 3b-23

TCP Round Trip Time and Timeout

EstimatedRTT = (1- )*EstimatedRTT + *SampleRTT

 Exponential weighted moving average

 influence of past sample decreases exponentially fast

 typical value:  = 0.125

3: Transport Layer 3b-24

Example RTT estimation:
RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

R
T

T
 (

m
il

li
se

co
n

d
s)

SampleRTT Estimated RTT

3: Transport Layer 3b-25

TCP Round Trip Time and Timeout

Setting the timeout
 EstimtedRTT plus “safety margin”

 large variation in EstimatedRTT -> larger safety margin

 first estimate of how much SampleRTT deviates from
EstimatedRTT:

TimeoutInterval = EstimatedRTT + 4*DevRTT

DevRTT = (1-)*DevRTT +

 *|SampleRTT-EstimatedRTT|

(typically,  = 0.25)

 Then set timeout interval:

3: Transport Layer 3b-26

TCP Congestion Control

3: Transport Layer 3b-27

Principles of Congestion Control

Congestion:
 informally: “too many sources sending too much

data too fast for network to handle”
 Demand exceeds capacity which lasts for a certain

period of time

 different from flow control!

 manifestations:

 lost packets (buffer overflow at routers)

 long delays (queueing in router buffers)

 a top-10 problem!

3: Transport Layer 3b-28

Causes/costs of congestion: scenario 1

 two senders, two
receivers (two
connections
sharing a link)

 one router,
infinite buffers

 no retransmission

  large delays
when congested

 maximum
achievable
throughput

unlimited shared

output link buffers

Host A
lin : original data

Host B

lout

Per-connection throughput

3: Transport Layer 3b-29

Causes/costs of congestion: scenario 2

 one router, finite buffers

 sender retransmission of lost packet

finite shared output

link buffers

Host A lin : original
data

Host B

lout

l'in : original data, plus

retransmitted data

(offered load)

3: Transport Layer 3b-30

Causes/costs of congestion: scenario 2
 always: (goodput, no loss) (vs. throughput)

 “perfect” retransmission only when loss:

 retransmission of delayed (not lost) packet makes larger

(than perfect case) for same

l
in

l
out

=

l
in

l
out

>

l
in

l
out

“costs” of congestion:

 more work (retrans) for given “goodput”

 unneeded retransmissions: link carries multiple copies of pkt

R/2

R/2
lin

l
o
u
t

b. Retx (1/3 of

offered load)

R/2

R/2
lin

l
o
u
t

a.

R/2

R/2
lin

l
o
u
t

c. Premature timeout

 & unnecessary retx

 (one retx per pkt)

R/4

R/3

3: Transport Layer 3b-31

Causes/costs of congestion: scenario 3
 four senders

 multihop paths

 timeout/retransmit

l
in

Q: what happens as
and increase ? l

in

finite shared output

link buffers

Host A
lin : original data

Host B

lout

l'in : original data, plus
retransmitted data

3: Transport Layer 3b-32

Causes/costs of congestion: scenario 3

Another “cost” of congestion:

 when packet dropped, any upstream transmission
capacity used for that packet was wasted!

H

o

s

t

A

H

o

s

t

B

l
o

u

t

3: Transport Layer 3b-33

Two Common Approaches towards
congestion control

#1: End-to-end congestion control:
 No explicit feedback from network

 congestion inferred from end-system observed
loss, delay

 approach taken by TCP

A B

network

3: Transport Layer 3b-34

Two Common Approaches towards
congestion control

#:2: Network-assisted congestion control:
 routers provide feedback to end systems

 single bit indicating congestion (SNA, DECbit,
TCP/IP ECN, ATM)

 explicit rate sender should send at

A B R

3: Transport Layer 3b-35

TCP Congestion Control

Slow start

 Congestion avoidance

3: Transport Layer 3b-36

TCP Slow Start
(1/3)

 When connection
begins, increase rate
exponentially until
first loss event:
 Double cwnd every RTT

 done by incrementing
cwnd for every ACK
received

 Summary: initial rate
is slow but ramps up
exponentially fast

Host A

R
T

T

Host B

time exponential
increase

-> PROBE

network’s maximum “throughput”!

3: Transport Layer 3b-37

TCP Slow-Start (2/3)

 To get data flowing there must be acks to clock

out packets; but to get acks there must be data

flowing.

Maintain a per connection state variable in the

sender – “congestion window” cwnd

 “When to enter Slow-Start Phase?”
 When a connection begins

 After a timeout

3: Transport Layer 3b-38

TCP Slow Start (3/3)

Algorithm –

 When starting or restarting after a loss, set
cwnd=1 packet.

 Each time an ACK is received, cwnd is incremented by
one segment size, i.e. one ack for each new data,

 cwnd =cwnd+1.

 When sending, send the
min(receiver’s_advtiseWin, cwnd)

 cwnd is maintained in bytes.

 The segment size is announced by the receiver.

3: Transport Layer 3b-39

Congestion Avoidance

 Congestion is indicated by a timeout or the
reception of three duplicate ACKs.

 The goal is to avoid increasing the window
size too quickly and causing additional
congestion.

3: Transport Layer 3b-40

Congestion Avoidance Algorithm

 Slow start phase

 When a connection begins: cwnd is one segment and

ssthresh (slow start threshold) is 65,535 bytes.

 When congestion occurs, ssthresh=cwnd/2, cwnd=1

Once cwnd=ssthresh, the connection enters
the congestion avoidance phase.

 On each ack for new data, cwnd=cwnd+1/cwnd

(additive increase)

 When sending, send the min(receiver’s

AdvertiseWinow, cwnd)

3: Transport Layer 3b-41

cwnd
(segments)

Round-trip times

※Visualization of slow start and congestion avoidance.

Multiplicative

Increase

Additive

Increase

Additive increase

Congestion Avoidance
Slow Start

3: Transport Layer 3b-42

Duplicate ACKs

 If there are less than 3 duplicate ACKs, it
is assumed that there is just a reordering
of the segments.

 If 3 or more duplicate ACKs are received
in a row, it is a strong indication that a
segment has been lost.

 Fast Retransmit and Fast Recovery
 -> TCP-tahoe and TCP-reno

3: Transport Layer 3b-43

Fast Retransmit

When 3 duplicate ACKs are received, a
retransmission is performed without
waiting for a retransmission timer to
expire.

 ssthresh=cwnd/2 and cwnd = 1; (entering
Slow Start phase)

 Retransmit the missing segment.

3: Transport Layer 3b-44

TCP Tahoe

Slow Start
Fast

Retransmit
Three duplicate ACKs
ssthresh = cwnd /2
cwnd = 1

Retransmit the lost packet

Congestion
Avoidance

cwnd == ssthresh

cwnd += 1/cwnd per ACK

cwnd = cwnd + 1

per ACK

Timeout
ssthresh = cwnd /2
cwnd = 1 Three duplicate ACKs

ssthresh = cwnd /2
cwnd = 1

Timeout
ssthresh = cwnd /2
cwnd = 1

3: Transport Layer 3b-45

TCP Tahoe

After fast retransmit, goes to “slow-
start” phase to probe the network
again.

To avoid congest the network.

3: Transport Layer 3b-46

Fast Recovery

 Immediately after fast retransmit, instead
of entering slow start, congestion
avoidance is performed.

 To boot up throughput
 ssthresh=cwnd/2; cwnd =ssthresh + 3

segments

 Each time an ACK or a duplicate ACK
arrives, increment cwnd by the segment
size cwnd++;

Allow to transmit new packet

3: Transport Layer 3b-47

Fast Recovery (cont‟d)

When the next ACK arrives that
acknowledges the lost data,
 set cwnd to ssthresh

 enter congestion avoidance phase

3: Transport Layer 3b-48

TCP Reno

Slow Start Fast Retransmit

Congestion

Avoidance

cwnd =ssthresh

cwnd = cwnd + 1/cwnd

per ACK

cwnd = cwnd + 1

per ACK

Retransmit

the lost packet

Fast Recovery

Timeout
cwnd = 1

Timeout
ssthresh = cwnd /2
cwnd = 1

Timeout
ssthresh = cwnd /2
cwnd = 1

Recovered the lost packet
cwnd = ssthresh

Three duplicate ACKs
ssthresh = cwnd /2
cwnd = ssthresh + 3

Three duplicate ACKs
ssthresh = cwnd /2
cwnd = sshresh + 3

cwnd = cwnd + 1

per ACK

3: Transport Layer 3b-49

TCP-Reno: Congestion Window
Size

(1) After every new acknowledgment

 if (CWND < SSTHRESH)

 CWND  CWND + 1

 else

 CWND  CWND + 1/CWND

(2) Upon RTO (retransmission timeout)

 SSTHRESH  CWND/2

 CWND  1

(3) When NDUP (# of duplicate ACKs) exceeds 3

 SSTHRESH  CWND/2

 CWND  CWND/2 + 3

Congestion

avoidance

Slow start

Begin of

slow

start

Begin of

fast

recovery

3: Transport Layer 3b-50

Summary of TCP congestion control:
additive increase, multiplicative decrease

8 Kbytes

16 Kbytes

24 Kbytes

time

congestion

window

 Approach: increase transmission rate (window size),
probing for usable bandwidth, until loss occurs

 additive increase: increase CongWin by 1 MSS
every RTT until loss detected

multiplicative decrease: cut CongWin in half after
loss

time c
o
n
g
e
s
ti
o
n
 w

in
d
o
w

 s
iz

e

Saw tooth
behavior: probing

for bandwidth

3: Transport Layer 3b-51

Summary of TCP Congestion
Control: details

 sender limits transmission:
 LastByteSent-LastByteAcked

  CongWin

 Roughly,

 CongWin is dynamic, function
of perceived network
congestion

How does sender
perceive congestion?

 loss event = timeout or
3 duplicate acks

 TCP sender reduces
rate (CongWin) after
loss event

three mechanisms:
 AIMD

 slow start

 conservative after
timeout events

rate =
CongWin

RTT

Bytes/sec

3: Transport Layer 3b-52

TCP throughput

What‟s the average throughout of TCP as a
function of window size and RTT?
 Ignore slow start

 Let W be the window size when loss occurs.

When window is W, throughput is W/RTT

 Just after loss, window drops to W/2,
throughput to W/2RTT.

Average throughout: .75 W/RTT

3: Transport Layer 3b-53

Competition of TCP connection
with UDP flow
 Sender 1 (140.112.8.162)先以8 Mbps的速度送出TCP

traffic
 20秒後Sender 2 (140.112.10.177)再以8 Mbps的速度
送出UDP traffic

 The buffer space is 100KB for both queues. There
is no packet drop.

 After UDP traffic starts, TCP throughput drops
to less than 2Mb，UDP has the rest。

 Possible cause: Receiver (140.112.9.165) fails to
send ACKs to Sender 1，causing Sender 1以為發生
packet loss，因此把window size調降，而使得傳送的
速率下降。

3: Transport Layer 3b-54

Competition of TCP connection
with UDP flow (cont‟d)

TCP

UDP

3: Transport Layer 3b-55

The end. 

3: Transport Layer 3b-56

Homework #5

Chapter 3

 R5, R6, R10, R11, R14, P2, P5, P9, P12.

3: Transport Layer 3b-57

Homework #6

Chapter 3

 P15, P16, P24, P32, D1

