Part II: Policing

Dr. Yeali S. Sun
National Taiwan University

Outline

- GCRA

- Leaky bucket
 - Token bucket

Policing

- The goal is to hold sources that are actually used to committed resources.
- Mechanisms are used to constraint traffic arrivals injected into the network
- Mechanisms
- Generic Cell Rate Algorithm
- Leaky bucket
- Token bucket

Generic Cell Rate Algorithm (GCRA)

- Aka. Virtual Scheduling
- Used for conformance check
- Two parameters
- T - Increment
- L-Limit
- Regulated arrivals (\mathbf{T}) with occasional earlier arrivals but not earlier than the limit (L)

Conformance Check: cell arrival variation control

GCRA Algorithm

- Cell arrival time vs. TAT (Theoretical Arrival Time)
(1) If cell arrival time > curnt_TAT,
cel̄ is conforming and next TAT = cell arrival time $+\mathrm{T} / /$ slow arrival
- (2) If cell arrival time < curnt TAT but not earlier than limit L ,
cell is conforming; $\begin{gathered}\text { next TAT } \\ \text { curnt TAT } \\ \text { T }\end{gathered} / /$ early arrival but ok
- (3) Otherwise, cell arrives too earlier than the limit L and non-conforming

A "Leaky Bucket" with Water

"Continuous-State" Leaky Bucket

- Draining rate - drain-out at a continuous rate of one unit of content per time unit
- Content increased by the increment T for each conforming cell (i.e. work load brought by a cell)
- Follow GCRA
- Bucket capacity is T+L

A Leaky Bucket with "Packet"

Time

(a) Packet arrivals - a sender trying to cheat

(b) Viewed in terms of leaky bucket

Maximum Burst Tolerance (MBS)

- The maximum number of cells that can be transmitted back-to-back given the peak rate (PCR) (bits/sec) constraint
- L: allowable amount of early arrivals (bucket capacity $=$ $\mathrm{T}+\mathrm{L}$)
- δ : cell transmission time (sec/cell)
- T: 1/PCR (sec/cell)
- Assume drainage does not start until the first cell has been entirely transmitted.
- Used in traffic conformance check (i.e., cell variation delay tolerance (CVDT))
- $\mathrm{N}:$ the number of conforming cells arrived back-to-back at the peak cell rate.
- Total_in - Total_out = left_ōver_in_bucket

$$
\begin{aligned}
& N T-(N-1) \delta=T+L \\
& N=1+\frac{L}{T-\delta}
\end{aligned}
$$

SCR: sustainable cell (packet) rate

- An upper bound of "average rate"
- Average rate $=$ total cells transmitted $/$ duration of the connection

Token Bucket (1/2)

Token Bucket (2/2)

- The bucket holds tokens
- Tokens are generated by a clock at the rate of one token every ΔT sec.
- For a packet to be transmitted, it must capture and destroy a token.
- The bucket can save up tokens to allow burs \dagger arrivals and burst departure.
- The maximum number of tokens saved up is the bucket size.
- The maximum number of packets can be sent at once is the bucket size.
- Tokens are thrown away when the bucket fills up.
- Packets are never discarded.

Token Bucket: the length of the maximum rate burst

- Let
- M : the maximum output rate of the token bucket
- ρ : token generation rate
- C: bucket size
- S: duration to output all data
- Traffic Input $=$ Traffic output (the balance equation) C (bits) $+\rho S($ bits/sec x sec) $=$ MS (bits/sec x sec)

$$
\mathbf{S}=\mathbf{C} /(\mathbf{M}-\rho)
$$

- the time duration having the maximum output rate
- Example: $\mathrm{S}=250 \mathrm{~KB} /(25 \mathrm{MB}-2 \mathrm{MB})$

$$
=10.8 \mathrm{~ms}
$$

Traffic Control Example: using Leaky Bucket

- A burst of up to 1 MBytes can be handled without data loss

1MBytes per 40ms

- Host sending rate 25 MBps

```
\rho=2MBps (token generation rate)
C=1MB}\mathrm{ (token bucket size)
```

- Want to enforce this sustainable rate
i.e. token generation rate
- Allow burst arrivals

Leaky Bucke \dagger

(a)

(b)

Output: constant 2MBps

Legend:

- 10ms per column

$$
\begin{aligned}
& \rho=\mathbf{2 M B p s}(\text { drain-out rate }) \\
& \mathbf{C}=\mathbf{1 M B} \text { (leaky bucket size) } \\
& 25 \mathrm{M} \times 40 \mathrm{~ms}=2 \mathrm{M} \times \mathrm{Y} \\
& \mathrm{Y}=500 \mathrm{~ms}
\end{aligned}
$$

Traffic Control Example: using Token Bucket (1/3)

- Assume
- Token bucket is full (of token) when the $\mathrm{N}=1 \mathrm{MB}$ burst arrives
- Token bucket size $\mathrm{C}=250 \mathrm{KBytes}$;
- The bucket drains at the full $\mathrm{M}=25 \mathrm{MB} / \mathrm{sec}$ for 11 msec
- $\quad \rho$: token arrival rate $($ bytes $/ \mathrm{sec})=2 \mathrm{MB} / \mathrm{sec}$
- S: maximum allowable burst length (sec)
-> $25 \mathrm{MB} \times \mathrm{S}=250 \mathrm{~KB}+2 \mathrm{MB} \times \mathrm{S}$
$->S=250 \mathrm{~KB} /(25 \mathrm{MB}-2 \mathrm{MB})=10.8 \mathrm{~ms}$
- Drain out duration Y (sec)
-> $\mathrm{MS}+\rho \mathrm{Y}=\mathrm{N}$
-> $25 \mathrm{MB} \times 10.8 \mathrm{~ms}+2 \mathrm{MB} \times \mathrm{Y}=1 \mathrm{MB}$
-> $\mathrm{Y}=364.5 \mathrm{~ms}$

Traffic Control Example: using Token Bucket (2/3)

Figure 5.25 (d) - Find the duration with maximum output rate 25 Mps

- Given token bucket size $=500 \mathrm{~KB}$
- The maximum allowable burst size (sec) (i.e., $\mathrm{S}=\mathrm{C} /(\mathrm{M}-\rho)$)
-> S $=500 \mathrm{~KB} /(25 \mathrm{MB}-2 \mathrm{MB})=21.739 \mathrm{~ms} \sim 22 \mathrm{~ms}$
- The duration with average output rate 2 Mps
-> $25 \mathrm{MB} \times 22 \mathrm{~ms}+2 \mathrm{MB} \times \mathrm{Y}=1 \mathrm{MB}$
-> $\mathrm{Y}=228.26 \mathrm{~ms}$

Traffic Control Example: using Token Bucket (3/3)

Figure 5.25 (e) - Find the duration with maximum output rate 25 Mps

- Given token bucket size $=750 \mathrm{~KB}$
- The maximum allowable burst size (sec) (i.e., $\mathrm{S}=\mathrm{C} /(\mathrm{M}-\rho)$)

$$
\text { -> } \mathrm{S}=750 \mathrm{~KB} /(25 \mathrm{MB}-2 \mathrm{MB})=32.609 \sim 33 \mathrm{~ms}
$$

- The duration with average output rate 2 Mps
-> $25 \mathrm{MB} \times 33 \mathrm{~ms}+2 \mathrm{MB} \times \mathrm{Y}=1 \mathrm{MB}$
-> $\mathrm{Y}=92.391 \mathrm{~ms}$

Discussion

- 250 KB -> $25 \mathrm{MB} \times 10.8 \mathrm{~ms}, \mathrm{Y}=364.5 \mathrm{~ms}$

■ 500 KB -> $25 \mathrm{MB} \times 22 \mathrm{~ms}, \mathrm{Y}=228.26 \mathrm{~ms}$
■ 750 KB -> $25 \mathrm{MB} \times 33 \mathrm{~ms}, \mathrm{Y}=92.391 \mathrm{~ms}$

- Which input arrivals are more bursty to the network?
- Allow "bursts"!

Concatenate a token bucket with a leaky bucket

- Figure 5.25 (f)

To further "smooth" the traffic (less bursty output)

- To concatenate a token bucket with a leaky bucket

- $\rho=\mathbf{2 M B p s}$ (token generation rate)
- $\mathbf{C}=\mathbf{1 M B}$ (token bucket size)

Concatenate a token bucket with a leaky bucket (cont'd)

- TokenBucket_max_output_rate x max_rate_duration + token_gen_rate x avg_rate_durātion
= LeakyBucket_max_output_rate x (max_rate_duration + avg_rate_duration)

$$
\text { -> MS+ } \rho^{*} X=L *(S+X)
$$

- Average rate duration X
-> $\mathrm{X}=(\mathrm{M}-\mathrm{L}) * \mathrm{~S} /(\mathrm{L}-\rho)$
From figure 5.25 (d), we have $\mathrm{S}=22 \mathrm{~ms}$
-> $\mathrm{X}=(25 \mathrm{MB}-10 \mathrm{MB}) * 22 \mathrm{~ms} /(10 \mathrm{MB}-2 \mathrm{MB})$
$=40.761 \mathrm{~ms}$
- The duration of maximum output rate from leaky bucket is $\mathrm{S}+\mathrm{X}$
-> $40.71+22=62.71 \mathrm{~ms}$
(f)

Concatenate a token bucket with a leaky bucket (cont'd)

- The duration of having average rate output after token+leaky buckets traffic shaping
- Total_traffic_at_leaky_bucket_max_rate + total_traffic_at_avg_rate = total_traffic_amount
-> $\mathrm{L}^{*}(\mathrm{~S}+\mathrm{X})+\rho^{*} \mathrm{Y}=1 \mathrm{MB}$
-> $\mathrm{Y}=(1 \mathrm{MB}-10 \mathrm{MB} * 62.5 \mathrm{~ms}) / 2 \mathrm{MB}=187.5 \mathrm{~ms}$

Compare Leaky bucket and Token bucket

- Leaky bucket
- does not allow idle hosts to save up permits or tokens
- does not allow bursts of outputs
- enforces a rigid output pattern at the average rate no matter how bursty the traffic is.
- Packet lost when the bucket is full
- Token bucket
- allows burst arrivals and bursty output
- Sustainable rate and peak rate
- No packet loss

Implementations

- Leaky bucket algorithm
- conformance check and traffic shaping
- Token bucket algorithm
- transmission control
- allows burst arrivals
- Traffic smoothing between routers
- Self-similar traffic
- Individual flows and traffic aggregate
- Traffic regulation of host traffic output

Summary

- Policing is necessary to ensure that traffic sources conform to the committed rates.
- A powerful mechanism in traffic regulation
- Leaky bucket is often used for peak rate regulation.
- Token bucket is often used to allow instantaneous bursty arrival while regulating the traffic on their average behaviors.

The end. ©

Reference

- S. Tanenbaum, "Computer Networks," 4th edition, Prentice Hall, 2003.

