Digital Convergence

Separate networks for *different media* transport

- Internet
- PSTN (*Public Switched Telephone Network*), PLMN (*Public Land Mobile Network*) (e.g., Cellular GSM) voice
- Cable networks media broadcasting
- Terrestrial wireless networks TV broadcasting, radio
- "Integrated Services" *Digital* Networks
- Challenges and Issues
 - **QoS** resource allocation, scheduling, fairness, pricing
 - Mobility
 - Security

Internet: interconnection of networks

wireless

cellular handheld

> access points

wired

links

laptop

- millions of connected computing devices: *hosts* = *end systems*
 - running *network apps*

communication links

- fiber, copper, radio, satellite
- transmission rate =
 bandwidth (bps)

routers: forward packets (chunks of data)

Copyright 2012 Yeali S. Sun. All rights reserved. No part of this document may be reproduced, stored in a retrieval system, or transmitted in any form, or by any means without the prior written permission of the author.

YLS- February 2012

All-IP networks

All media will be transported in IP packets across heterogeneous networks.

Transition of Telecom Industry ...

- The roots are traditional <u>voice</u> service and the <u>circuit</u> <u>switched</u> networks that support it.
- Migrate to a new network and a new, broader set of applications.
- The new network will
 - use internet protocol (IP) and
 - converge voice, *data* and *video* services onto a single infrastructure.
- This will
 - significantly reduce the unit cost of delivering services for the operator and
 - create a *flexible*, dynamic technology platform upon which *new* services can be designed and deployed and retried.

Wireless Cellular Networks in telecommunications: generation (1/2)

■ 1G

- 1981
- Analog transmission
- **2**G
 - **1992**
 - Digital transmission
- **3**G
 - 2001
 - Multi-media support
 - Spread spectrum transmission and at least 200 kbps
 - HSPA+ standard in WCDMA
 - In 2009: 28 Mbps downstreams and 22 Mbps upstreams without MIMO, i.e. only with one antenna
 - In 2011 up to 42 Mbps downstreams using 2x2 MIMO
 - EV-DO Rev. B in CDMA2000
 - in 2010 and offers 15.67 Mbit/s downstreams

Wireless Cellular Networks in telecommunications: generation (2/2)

- **4**G
 - Standards
 - the IMT-Advanced (International Mobile Telecommunications Advanced) requirements specified by ITU-R organization in 2009
 - Main requirements
 - peak speed at 100 Mbps for high mobility communication (such as from trains and cars) and 1Gbps for low mobility communication (such as pedestrians and stationary users)
 - all-IP packet-switched networks
 - Compliant versions, e.g.,
 - Long-term-evolution Advanced (LTE) Advanced
 - WirelessMAN (WiMAX)-Advanced
 - Technologies
 - *OFDMA* and other frequency-domain equalization schemes combined with *MIMO* (Multiple In Multiple Out), e.g., multiple antennas, dynamic channel allocation and channel-dependent scheduling

((;))

Characteristics of selected wireless link

Copyright 2012 Yeali S. Sun. All rights reserved. No part of this document may be reproduced, stored in a retrieval system, or transmitted in any form, or by any means without the prior written permission of the author.

YLS- February 2012

Quality of Service (QoS) and Resource Management

Professor Yeali S. Sun National Taiwan University

QoS

- Traffic control
 - admission control
 - traffic shaping and policing
- Resource allocation
- Resource scheduling
- Notion of fairness
- Traffic characteristics
 - Bursty, constant-bit-rate, variable-bit-rate, etc.
 - Throughput, delay, delay jitter, packet loss rate, etc.

Outline

- QoS in ATM (Asynchronous Transfer Mode) networks
 - Service types
 - QoS parameters
- Traffic Shaping and Policing in Traffic Control
 - Leaky bucket
 - Token bucket

- S. Tanenbaum, "Computer Networks," 5th edition, Prentice Hall, 2010.
- S. Tanenbaum, "Computer Networks", 3rd edition, Prentice Hall, 1996.

Broadband ISDN

- ISDN Integrated Services Digital Network
- Main players telephone companies (teleco)
- The first attempt to build ONE single integrated network for all kinds of information transfer
- Technology of choice
 - Asynchronous Transfer Mode (ATM)

Broadband ISDN (cont'd)

- ATM is a technology and a service (visible to the user)
- a.k.a. cell relay
- Why cell switching?
 - High flexibility on handling both constant rate traffic (audio, video) and variable rate traffic (data)
 - *Easier operation for high speed networks* than that using traditional multiplexing techniques

ATM as the backbone infrastructure technology

IWF: InterWorking Function

ATM: Introduction

- To transmit all information in small, fixedsize packets (i.e. cells)
 - A cell is of 53 bytes 5-byte header and 48byte payload
- Connection-oriented service
 - Three phases: connection establishment, data transfer and connection release

Why ATM cell is size 53 bytes?

- The American standard for DS0 is 64 Kbs, the European standard is 32 Kbs.
- The Americans pushed for an ATM payload of 64 Bytes while the Europeans pushed for 32 Bytes.
- To come to a compromise, the committee
 - added 64 + 32 = 96
 - then divided this sum by 2 for a result of 48.
 - A 5 Byte header was added for a total of 53 Bytes.

Multimedia Communications over ATM

Figure 7.2 Multimedia Communications Example Using ATM

Copyright 2012 Yeali S. Sun. All rights reserved. No part of this document may be reproduced, stored in a retrieval system, or transmitted in any form, or by any means without the prior written permission of the author.

YLS- February 2012

ATM Introduction (cont'd)

Unreliable cell transfer

- Designed for fiber optics
- Leave error control to higher layers
- For real-time traffic no need of retransmission of occasional bad cells but just ignoring it.
- Connection-oriented: cell order is preserved.

Operating speeds

- 155.5Mbps (oc-3, STM-1)
 - Compatible with SONET transmission system
- 622Mbps (oc-12, STM-4)
 - Combine four 155Mbps channels

SONET		SDH	Data rate (Mbps)			
Electrical	Optical	Optical	Gross	SPE	User	
STS-1	OC-1		51.84	50.112	49.536	
STS-3	OC-3	STM-1	155.52	150.336	148.608	
STS-9	OC-9	STM-3	466.56	451.008	445.824	
STS-12	OC-12	STM-4	622.08	60 1.344	594.432	
STS-18	OC-18	STM-6	933.12	902.016	891.648	
STS-24	OC-24	STM-8	1244.16	1202.688	1188.864	
STS-36	OC-36	STM-12	1866.24	1804.032	1783.296	
STS-48	OC-48	STM-16	2488.32	2405.376	2377.728	

Fig. 2-32. SONET and SDH multiplex rates.

ATM Service Types

- Defined in ATM Forum UNI 4.0 (1988+)
 - Five service types

Class	Description	Example		
CBR	Constant bit rate	T1 circuit		
RT-VBR	Variable bit rate: real time	Real-time videoconferencing		
NRT-VBR	Variable bit rate: non-real time	Multimedia email		
ABR	Available bit rate	Browsing the Web		
UBR Unspecified bit rate		Background file transfer		

Fig. 5-69. The ATM service categories.

Characteristics of the ATM Service Categories

Service characteristics	CBR	RT-VBR	NRT-VBR	ABR	UBR
Bandwidth guarantee	Yes	Yes	Yes	Optional	No
Suitable for real-time traffic	Yes	Yes	No	No	No
Suitable for bursty traffic	No	No	Yes	Yes	Yes
Feedback about congestion	No	No	No	Yes	No

Fig. 5-70. Characteristics of the ATM service categories.

- Bandwidth
- End-to-end Delay
- Statistical multiplexing
- Congestion control

Data Over Cable Service Interface Specification (DOCSIS)

- An international standard for the communications and operation support interface requirements for a data over cable system.
- It is employed by many cable television operators (CATV) to provide Internet access over their existing hybrid fiber coaxial (HFC) infrastructure.
- Specifications
 - Version 1.0 issued in March 1997,
 - Version 1.1 adding *Quality of Service (QoS)* capabilities in April 1999.
 - Version 2.0 *enhancement of upstream transmission speeds* for symmetric services in December 2001.
 - Version 3.0 enhancement to increase transmissions speeds for both upstream and downstream and support for Internet Protocol version 6 (IPv6) in August 2006.

IEEE 802.16 (WiMAX)

The IEEE 802.16-e 2005 standards for *mobile broadband wireless services* with the geographical coverage scale of *a metropolitan area*.

Broadband Wireless: IEEE 802.16e (WiMAX) _{soнo}

Source: Nokia Networks

Broadband Wireless: IEEE 802.16e (WiMAX)

Wireless Mesh Network

• Packet relay (forwarding) routes

Resource Management in WiMAX

- The physical layer technology is based on the Orthogonal Frequency Division Multiple Access (OFDMA).
- In the MAC layer, WiMAX <u>frames</u> are constructed in two <u>dimensions</u>: <u>subchannels</u> in the <u>frequency</u> domain and OFDMA <u>symbols</u> (or <u>time slots</u>) in the <u>time</u> domain.
- User data are carried on areas called *bursts*, each consisting of a group of subchannels and associated OFDMA symbols.

MAC (Medium Access Control) Protocols: a taxonomy

Three broad classes:

- Channel Partitioning
 - divide channel into smaller "pieces" (time slots, frequency, code)
 - allocate piece to node for <u>exclusive</u> use
- Random Access
 - channel not divided, allow collisions
 - "recover" from collisions
 - "Taking turns"
 - Nodes take turns, but nodes with more to send can take longer turns

Copyright 2012 Yeali S. Sun. All rights reserved. No part of this document may be reproduced, stored in a retrieval system, or transmitted in any form, or by any means without the prior written permission of the author.

YLS- February 2012

Channel Partitioning MAC protocols: TDMA

TDMA: time division multiple access

- channel divided into N time slots (frames)
- access to channel in "rounds"
- each station gets fixed length slot (length = pkt trans time) in each round
- unused slots go idle
- example: 6-station LAN, 1,3,4 have pkt, slots 2,5,6 idle
- inefficient with low duty cycle users and at light load.

Copyright 2012 Yeali S. Sun. All rights reserved. No part of this document may be reproduced, stored in a retrieval system, or transmitted in any form, or by any means without the prior written permission of the author.

YLS- February 2012

Channel Partitioning MAC protocols: FDMA

FDMA: frequency division multiple access

- channel spectrum divided into <u>frequency bands</u>
- each station assigned fixed frequency band
- unused transmission time in frequency bands go idle
- example: 6-station LAN, 1,3,4 have pkt, frequency bands
 2,5,6 idle

WiMAX Frame Structure

or by any means without the prior written permission of the author.
Resource Management in WiMAX

- Data carried on the *same burst* are coded using the *same* coding and modulation, randomization, FEC coding and bit interleaving techniques.
- In WiMAX, the radio transmission quality is measured by CINR (Carrier to Interference plus Noise Ratio) or SINR (Signal)
- The better the channel quality, the data can be transmitted using higher modulation methods (e.g., 64QAM (3/4)), and less number of OFDMA symbols with more data bytes per symbol.
- Seven modulation options are specified in the standard.
- Each mode carries a different amount of data per subchannel and requires different maximum number of concatenated slots to carry a certain amount of data.

SINR

First, for successful transmission, individual pair's SINR value must satisfy the capture threshold constraint, i.e.,

$$SINR = \frac{P_v}{noise + I} = \frac{P_u / d^{\alpha}(u, v)}{\eta + \sum_x \frac{P_x}{d^{\alpha}(x, v)}} \ge \gamma$$

 where P_u and P_x are the transmission power of node u and node x, respectively.

Copyright 2012 Yeali S. Sun. All rights reserved. No part of this document may be reproduced, stored in a retrieval system, or transmitted in any form, or by any means without the prior written permission of the author.

YLS- February 2012

Shannon Capacity

The channel capacity C: the theoretical tightest upper bound on the rate of clean (or arbitrarily low bit error rate) data that can be sent with a given average signal power S through an analog communication channel subject to additive white Gaussian noise of power N, is:

$$C = B\log_2(1 + SINR)$$

where

- **C** is the channel capacity (bps);
- **B** is the bandwidth of the channel (Hz);

Network Resource – Allocation in WiMAX

- **User data are carried in areas called bursts**,
 - **Each consisting of a group of subchannels** *f* **and associated OFDMA symbols** *m*
 - **Channel condition : Mode** *k*

Mode (k)	Modulation	Useful data per slot (B _k)	Max number of concatenated slots	Max data payload
0	QPSK(1/2)	6 bytes	6	36 bytes
1	QPSK(2/3)	9 bytes	4	36 bytes
2	16QAM(1/2)	12 bytes	3	36 bytes
3	16QAM(3/4)	18 bytes	2	36 bytes
4	64QAM(1/2)	18 bytes	2	3.6-bytes 201
5	64QAM(2/3)	24 bytes	1	24 bytes
6	64QAM(3/4)	27 bytes	1	27 bytes

VG 40 of 81

Broadband Wireless: IEEE 802.16d

- 5 different scheduling services to meet the QoS requirements of multimedia applications
 - *I.* UGS (Unsolicited Grant Service)
 - 2. *rtPS* (real-time Polling Service)
 - *3. ertPS* (extended real-time Polling Service)
 - *4. nrtPS* (non-real-time Polling Service)
 - 5. BE (Best Effort)

UGS - Unsolicited Grant Service

- Target for applications that generate fixed-size data packets at periodic intervals
 - T1/E1
 - VoIP without silence suppression
- An uplink service flow is granted by the BS at fixed intervals without additional polling or interaction.

Copyright 2012 Yeali S. Sun. All rights reserved. No part of this document may be reproduced, stored in a retrieval system, or transmitted in any form, or by any means without the prior written permission of the author.

YLS- February 2012

VG 43 of 81

rtPS

rtPS connections are required to notify the BS of their current bandwidth requirements.

- The BS periodically grants unicast polls to rtPS connections
 - Polling period may be specified as an optional QoS parameter

DL-MAP

Frame

BS

throughput requirements. MPEG (Moving Pictures Experts Group) video

real-time Polling Service

- VoIP with silence suppression
- The fixed polling interval is typically short to meet the service flows' real-time needs.

Target for applications that generate variable-size data packets at periodic intervals with stringent latency and

- Key QoS parameters
 - Minimum reserved traffic rate
 - Maximum latency

Frame

MS

ertPS -

extended-real-time Polling Service

- Additional service type defined in IEEE 802.16e
- Periodic fixed grants *unless* mobile stations notifies BS for grant *change*.

BS nrtPS non-real time Polling Service Frame Target for applications that do *not* have any specific delay requirements. require high throughput or need variable-sized data grants on a regular basis, such as high-bandwidth FTP. The scheduler sends unicast polls to mobile stations on a fixed interval to determine whether data is queued for transmission on a particular service flow. Uplink subframe Downlink subframe DL-MAP

If data is queued, the scheduler provides a transmission grant for the service flow.

BE - Best Effort

- The scheduler grants transmit opportunities on a FCFS basis.
- Difference between nrtPS & BE
 - nrtPS is reserved a minimum amount of bandwidth
- nrtPS & BE both request bandwidth by
 - 1. Piggybacking
 - 2. Broadcast Polls

Summary: service and channel access scheduling

	Periodicity	Grant(s)	Operation mode
UGS	yes	fixed	
rtPS	yes	variable	User tells its current needs
ertPS	yes	fixed & variable	Allow user to change its needs
nrtPS	no	variable	BS polls, user tells
Best effort	no	no	Contend for telling BS their needs

Random Access Protocols

- When node has packet to send
 - transmit at full channel data rate R.
 - no *a priori* coordination among nodes
- two or more transmitting nodes \rightarrow "collision",
- random access MAC protocol specifies:
 - how to detect collisions
 - how to recover from collisions (e.g., via delayed retransmissions)
- Examples of random access MAC protocols:
 - slotted ALOHA
 - ALOHA
 - CSMA, CSMA/CD, CSMA/CA

Copyright 2012 Yeali S. Sun. All rights reserved. No part of this document may be reproduced, stored in a retrieval system, or transmitted in any form, or by any means without the prior written permission of the author.

YLS- February 2012

QoS functions

Figure 2. QoS functions within the BS and SSs.

Copyright 2012 Yeali S. Sun. All rights reserved. No part of this document may be reproduced, stored in a retrieval system, or transmitted in any form, or by any means without the prior written permission of the author.

YLS- February 2012

VG 49 of 81

UMTS (3G) QoS Traffic Classes

Traffic Class	Conversational Class	Streaming Class	Interactive Class	Background Class
Fundamental characteristics	Preserve time relation (variation) between information entities of the stream	Preserve time relation (variation) between information entities of the stream	Request response pattern	Destination is not expecting the data within a certain time
	Conversational pattern (stringent and low delay)		Preserve payload content	Preserve payload content
Example application	Voice	Streaming Video	Web Browsing	Background download of e- mails

UMTS (Universal Mobile Telecommunications System)

Quality of Service (QoS)

- An important provisioning in ATM networks to support *real-time continuous media*.
- A <u>traffic contract</u> (or service level agreement (SLA)) defines the service between service <u>user</u> and service provider
- " ... identification of *parameters* that can be *directly observed and measured* ... " at the *service access point*.
- The defined parameters apply to cell (packet) streams <u>conforming</u> to the negotiated traffic contract.
 - What about cells not conforming with the traffic contract?

QoS Parameters

ATM Cell Transfer

"Successful" Cell transfer

- No error and received within a specified time
 T_{max.}
- "Errored" Cell
 - Received within T_{max} but with error
- "Lost " Cell
 - No cell is received within T_{max}, e.g., "never showed up" or "*late*"

ATM Cell Transfer (cont'd)

"Misinserted" Cell

- A received cell for which there is no corresponding transmitted cell
- Severely-Errored" Cell Block
 - When M or more Lost/Misinserted/Errored cells are observed in a received cell block of N cells transmitted consecutively on a given connection. (M out of N)

Quality of Service (QoS) -Different Perspectives (1/3)

User-level QoS

- End-to-end QoS
- Qualitative description
- User's quality of experience (QoE)

 how to improve the quality of offered services, as perceived by users

- Application-level QoS
 - Quantitative description
 - Application-oriented
 - Translation of User's QoS to Application's QoS is still an open research issue

Application Level QoS: example - H.264 (1/3)

- A codec technology employs *layered coding*.
- It has been chosen to support *robust content delivery* on a wide variety of networks and channel-type environments
 - ranging from very low bit rate, low frame rate, and low resolutions for *mobile devices* to high bit rate and high resolution of *HDTV*, broadcast, DVD storage, RTP/IP packet networks, and ITU-T multimedia telephony systems.
- In order to enable multi-vendor end devices to successfully interwork with each other, H.264 defines the *profiles* and *levels* to assure all H.264 encoders and decoders (software and hardware) conform to the standard specification and are interoperable.
- It is useful for streaming media applications.

Application Level QoS: example - H.264 (2/3)

- A *level* is defined to place limits on the parameters such as sample processing rate, picture size and *coded bit rate* of user devices.
 - The former two parameters are related to the performance of user devices.
 - The latter specifies the *network QoS requirement*.
- Sixteen levels from 1 to 5.1 have been defined in H.264/AVC with the maximum bit rate ranging from 64kbps to 240Mbps.
- For the current 3G and WiMAX networking environments, *six* level numbers are considered.
- A H.264 video streaming service request must specify the requested level number.

H.264: different video quality levels for video streaming service (3/3)

Video Quality	Max/Min bit rate (r _{max} /r _{min})
Level number	
2	2048/768kbit/s
1.3	768/384kbit/s
1.2	384/192kbit/s
1.1	192/128kbit/s
1.b	128/64kbit/s
1	<=64kbit/s

VoIP QoS Criteria

■ PESQ (ITU-T P.862)

MOS (Mean Opinion Score) value

ITU G.107

E-Model

 $\mathbf{R} = \mathbf{R}_{\mathrm{o}} - \mathbf{I}_{\mathrm{s}} - \mathbf{I}_{\mathrm{d}} - \mathbf{I}_{\mathrm{e-eff}} + \mathbf{A}$

- \mathbf{R}_{o} : basic signal-to-noise ratio
- I_s: *simultaneous* impairment factor
- I_d : *delay* impairment factor
- I_{e-eff} : *equipment* impairment factor including *packet* loss
- A : advantage factor

Copyright 2012 Yeali S. Sun. All rights reserved. No part of this document may be reproduced, stored in a retrieval system, or transmitted in any form, or by any means without the prior written permission of the author.

YLS- February 2012

User/application Level QoS: example -VoIP PESQ (ITU-T P.862) -MOS (mean opinion score) value

R-value Lower limit	MOS	Speech Quality Category	User Satisfaction
90	4.34	Best	Very Satisfied
80	4.03	High	Satisfied
70	3.6	Medium	Some users dissatisfied
60	3.1	Low	Many users dissatisfied
50	2.58	Poor	Nearly all users dissatisfied

Quality of Service (QoS) -Different Perspectives (2/3)

- Transport-level QoS (end-to-end)
 - TCP layer QoS
 - UDP layer QoS
 - IP layer QoS
 - Physical layer (e.g., ATM connection, wireless channel, etc.) QoS
- Network Performance
 - Network Element Performance
 - Per-Hop Behavior

Quality of Service (QoS) -Different Perspectives (3/3)

The issue is "How to map users requirement to network support Quality of Service (QoS) service?"

About Network Control and Management

Planning

Time scale – a range of weeks, months, years

- Statistics vs. raw data
- Individual vs. aggregate

per user, per session, per flow, etc.

 Service vs. individual components (network elements) availability

Service Level Agreement (SLA)

- When a virtual circuit (connection, session, association, etc.) is established, both service user and service provider must *agree on* a contract defining the service, including
 - Source Traffic Description
 - To characterize the offered load
 - Requested QoS Class
 - QoS desired by the user and accepted by the provider
 - Measurable quantities
 - The **Compliance** Requirements
 - What if service user violates the contract?
 - What if service provider violates the contract?

QoS Parameters in ATM (1/6)

Worst-case performance parameters
 The service provider is required to meet or exceed it.

Source traffic description

- Peak Cell Rate (PCR)
 - **T=1/PCR** the minimum spacing between cells
- Sustained Cell Rate (SCR)
 - e.g., for CBR SCR=PCR; for other service categories, SCR << PCR</p>

QoS Parameters in ATM (2/6)

- Minimum Cell Rate (MCR)
 - For ABR, MCR>=0
- (PCR/SCR) ratio has been used as one measure of traffic burstiness

"Source traffic characteristics specify how fast the user wants to send data."

Statistical values – average over a certain period of time

QoS Parameters in ATM (3/6)

Conformance check

Cell arrivals may be *statistically* described by an average arrival rate such as PCR or SCR.

In reality, cell arrivals may vary in time.

QoS Parameters in ATM (3/6)

- CVDT (Cell Variation Delay Tolerance)
 It is used to *control the amount of variability acceptable*
 - It specifies how much variation will be present in cell arrivals at a network node
 - conformance check
 - traffic shaping

It is measured at the <u>receiver</u>

Conformance Check: cell arrival variation control

QoS Parameters in ATM (4/6)

- Specify the *characteristics* of **network** delivery service
 - Cell Loss Rate (CLR) (1-Cell_successfully_received/Cell_sent)
 - Cell Transfer Delay (CTD) $(t_{received} t_{sent})$
 - Cell Delay Variation (CDV) how uniformly the cells are delivered

Cell Delay: distribution probability function

QoS Parameters in ATM (5/6)

Cell Delay Jitter

$$\begin{aligned} D_{i+1} - D_i &= (R_{i+1} - S_{i+1}) - (R_i - S_i) \\ &= (R_{i+1} - R_i) - (S_{i+1} - S_i) \\ &= \text{inter-arrival time at receiver -} \\ &\text{inter-departure time at sender} \end{aligned}$$

- Measured at the *receiver* ...
- Specify the characteristics of the <u>network</u>
 - **CER (Cell Error Rate):** Fractions of cells delivered with error
 - SECBR (Severely-Errored Cell Block Ratio): Fraction of blocks garbled
 - **CMR (Cell Misinsertion Rate):** Fraction of cells delivered to wrong destination
QoS Parameters: summary (6/6)

Parameter	Acronym	Meaning			
Peck Cell Rate	PCR	Maximum rate at which cells will be sent			
Sustained Cell Rate	SCR	Long-term average cell rate			
Minimum Cell Rate	MCR	Minimum acceptable cell rate			
Cell Delay Variation Tolerance	CDVT	Maximum acceptable cell jitter			
Cell Loss Ratio	CLR	Fraction of cells <i>lost</i> or delivered too <i>late</i>			
Cell Transfer Delay	CTD	How long delivery takes (mean and maximum)			
Cell Delay Variation	CDV	The variance in cell delivery times			
Cell Error Rate	CER	Fractions of cells delivered with error			
Severely-Errored Cell Block Ratio	SECBR	Fraction of blocks garbled			
Cell Misinsertion Rate	CMR	Fraction of cells delivered to wrong destination			

Sources of QoS Degradation (1/5)

- Propagation Delay
- Media Error
 - Including random and/or *burst* bit errors
- Switch architecture
 - Switch matrix design, e.g., blocking and nonblocking

Router Architecture Overview

Two key router functions:

- run routing algorithms/protocol (RIP, OSPF, BGP)
- *switching packets* from incoming to outgoing link

Input Port Queueing

- Fabric slower than input ports combined -> queueing may occur at input queues
- Head-of-the-Line (HOL) blocking: queued datagram at front of queue prevents others in queue from moving forward
- queueing delay and loss due to input buffer overflow!

Copyright 2012 Yeali S. Sun. All rights reserved. No part of this document may be reproduced, stored in a retrieval system, or transmitted in any form, or by any means without the prior written permission of the author.

YLS- February 2012

Output Ports

Buffering required when packets arrive from fabric faster than the transmission rate

Scheduling discipline chooses among queued packets for transmission

Copyright 2012 Yeali S. Sun. All rights reserved. No part of this document may be reproduced, stored in a retrieval system, or transmitted in any form, or by any means without the prior written permission of the author.

YLS- February 2012

Sources of QoS Degradation (2/5)

- Buffer strategy
 - Buffer space management: dedicated buffer per port, shared buffer pool or some combination;
- Packet transmission scheduling
 - Scheduling is to determine which packet to send next and are used primarily to manage the allocation of bandwidth among flows.
 - FIFO, priority or complex queueing disciplines (e.g., weighted fair queueing (WFQ))

Scheduling with traffic rate control

Sources of QoS Degradation (3/5)

- Traffic Load
 - The load offered on the route

Sources of QoS Degradation (4/5)

- Congestion
 - Bottleneck link
 - Congestion control
 - TCP
 - Queue management (Tail drop vs. Random Early Drop (RED))

Queue Management

- It is to manage the length of packet queues by dropping packets when necessary or appropriate.
- Active queue management
- The traditional technique for managing router queue lengths is "tail drop".
 - A max length (in terms of packets) is set for each queue.
 - Incoming packets are accepted for the queue until the max length is reached, then drop subsequent incoming packets until the queue decreases.

The need for active queue management

Two important drawbacks:

- Lock-out : in some situations tail drop allow a single connection or a few flows to monopolize queue space, preventing other connections from getting room in the queue.
- However, this does not take into account that packet bursts play in Internet performance.

Sources of QoS Degradation (5/5)

- Resource allocation
 - Per packet, session, class, link, etc.
- Failures
 - Events that impact availability, e.g., port failures, switch failures or link failures

Impact of QoS Degradation on Performance Parameters

Attributes	CER	CLR	CMR	MCTD	CDV
Propagation Delay				X	
Media Error Statistics	X	X	X		
Switch Architecture		X		X	X
Buffer Capacity		X		X	X
Number of Tandem Nodes	X	X	X	X	X
Traffic Load		X	X	X	X
Failures		X			
Resource Allocation		X		X	X

or by any means without the prior written permission of the author.

Traffic Control

Introduction

- Traffic is policing at the edges of the network and packets are either permitted to go or dropped
- Traffic Contract
 - Source traffic description
 - Requested QoS class
- Conformance Check
 - User Parameter Control (UPC) <u>identify</u> conforming or non-conforming packets
 - Actions for non-conforming traffic
 - Mechanisms, e.g., Leaky bucket, GCRA

Introduction (cont'd)

Call Admission Control (CAC)

• To control the overall traffic *permitted* to enter the network

CAC and UPC are network operator specific

To be continued.

Congestion ControlRandom Early Drop (RED)

TCP Congestion Control

Slow start

Congestion avoidance

TCP Slow Start (1/3)

- When connection begins, increase rate
 exponentially until first loss event:
 - Double **cwnd** every RTT
 - done by incrementing
 cwnd for every ACK
 received
- <u>Summary</u>: initial rate is slow but ramps up exponentially fast

Copyright 2012 Yeali S. Sun. All rights reserved. No part of this do **INCLEO** may be reproduced, stored in a retrieval system, or transmitted in any form, or by any means without the prior written permission of the author.

-> PROBE network's maximum "throughput"!

VG 93 of 81

TCP Slow-Start (2/3)

- To get data flowing there must be acks to clock out packets; but to get acks there must be data flowing.
- Maintain a per connection state variable in the sender "congestion window" *CWnd*
 - "When to enter Slow-Start Phase?"
 - When a connection begins
 - After a timeout

TCP Slow Start (3/3)

Algorithm –

- When starting or restarting after a loss, set cwnd=1 packet.
- Each time an ACK is received, *cwnd* is incremented by one segment size, i.e. one ack for each new data,

cwnd = cwnd + 1.

- When sending, send the min(receiver's_advtiseWin, cwnd)
- *cwnd* is maintained in bytes.
 - The *segment size* is announced by the *receiver*.

Congestion Avoidance

Congestion is indicated by a *timeout* or the reception of *three* duplicate ACKs.

The goal is to avoid increasing the window size too quickly and causing additional congestion.

Congestion Avoidance Algorithm

Slow start phase

- When a connection begins: *cwnd* is one segment and *ssthresh* (slow start threshold) is 65,535 bytes.
- When congestion occurs, *ssthresh=cwnd/2*, cwnd=1
- Once *cwnd=ssthresh*, the connection enters the congestion avoidance phase.
 - On each ack for new data, cwnd=cwnd+1/cwnd (additive increase)
 - When sending, send the min(receiver's AdvertiseWinow, cwnd)

AIMD: additive increase, multiplicative decrease

Summary of TCP congestion control

- Approach: increase transmission rate (window size), probing for usable bandwidth, until loss occurs
 - additive increase: increase CongWin by 1 MSS every RTT until loss detected
 - *multiplicative decrease*: cut **CongWin** in half after loss

time

YLS- February 2012

Copyright 2012 Yeali S. Sun. All rights reserved. No part of this document may be reproduced, stored in a retrieval system, or transmitted in any form, or by any means without the prior written permission of the author.

VG 99 of 81