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The Standard Induction Principle

Let T be a theorem that we want to prove and suppose
that T includes a parameter n whose value can be any
natural number.

Here, natural numbers are positive integers, i.e., 1, 2, 3,
. . ., excluding 0.

To prove T , it suffices to prove the following two
conditions:

T holds for n = 1. (Base case)
For every n > 1, if T holds for n − 1, then T holds for
n. (Inductive step)

The assumption in the inductive step that T holds for
n − 1 is called the induction hypothesis.
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A Starter

Theorem 2.1
For all natural numbers x and n, xn − 1 is divisible by
x − 1.

Proof. (Try to follow the structure of this proof when you do
a proof by induction.)

The proof is by induction on n.

Base case: x − 1 is trivially divisible by x − 1.

Inductive step: xn − 1 = x(xn−1 − 1) + (x − 1). xn−1 − 1 is
divisible by x− 1 from the induction hypothesis and x− 1
is divisible by x − 1. Hence, xn − 1 is divisible by x − 1.

Note: a is divisible by b if there exists an integer c such that
a = b × c.
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Variants of Induction Principle

If a statement P , with a parameter n, is true for n = 1,
and if, for every n ≥ 1, the truth of P for n implies its
truth for n + 1, then P is true for all natural numbers.

(Strong Induction) If a statement P , with a parameter n,
is true for n = 1, and if, for every n > 1, the truth of P for
all natural numbers < n implies its truth for n, then P is
true for all natural numbers.

If a statement P , with a parameter n, is true for n = 1
and for n = 2, and if, for every n > 2, the truth of P for
n − 2 implies its truth for n, then P is true for all natural
numbers.
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Design by Induction: First Glimpse

Problem
Given two sorted arrays A[1..m] and B[1..n] of positive
integers, find their smallest common element; returns 0
if no common element is found.

Assume the elements of each array are in ascending
order.

Obvious solution: take one element at a time from A

and find out if it is also in B (or the other way around).

How efficient is this solution?

Can we do better?
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Design by Induction: First Glimpse (cont.)

There are m + n elements to begin with.

Can we pick out one element such that either (1) it is
the element we look for or (2) it can be ruled out from
subsequent searches?

In the second case, we are left with the same problem
but with m + n − 1 elements?

Idea: compare the current first elements of A and B.
1. If they are equal, then we are done.
2. The smaller one cannot be the smallest common

element.

Algorithms 2009: Mathematical Induction – 6/31



IM NTU

Design by Induction: First Glimpse (cont.)

Below is the complete solution:

function SCE(A,m,B, n) : integer;
begin

if m = 0 or n = 0 then SCE := 0;
if A[1] = B[1] then

SCE := A[1];
else if A[1] < B[1] then

SCE := SCE(A[2..m],m − 1, B, n);
else SCE := SCE(A,m,B[2..n], n − 1);

end
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Proving vs. Computing

Theorem 2.2 1 + 2 + · · · + n = n(n+1)
2 .

This can be easily proven by induction.

Key steps: 1 + 2 + · · · + n + (n + 1) = n(n+1)
2 + (n + 1) =

n
2+n+2n+2

2 = n
2+3n+2

2 = (n+1)(n+2)
2 .

Induction seems to be useful only if we already know
the sum.

What if we are asked to compute the sum of a series?

Let’s try 8 + 13 + 18 + 23 + · · · + (3 + 5n).
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Proving vs. Computing (cont.)

Idea: guess and then verify by an inductive proof!

The sum should be of the form an2 + bn + c.

By checking n = 1, 2, and 3, we get 5
2n2 + 11

2 n.

Verify this, i.e., the following theorem, for all n by
induction.

Theorem 2.3
8 + 13 + 18 + 23 + · · · + (3 + 5n) = 5

2n2 + 11
2 n.
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Another Simple Example

Theorem 2.4
If n is a natural number and 1 + x > 0, then (1 + x)n ≥
1 + nx.

Below are the key steps:

(1 + x)n+1 = (1 + x)(1 + x)n

{induction hypothesis and 1 + x > 0}
≥ (1 + x)(1 + nx)

= 1 + (n + 1)x + nx2

≥ 1 + (n + 1)x

The main point here is that we should be clear about
how conditions listed in the theorem are used.
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Counting Regions

Source: Manber 1989
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Counting Regions (cont.)

Theorem 2.5
The number of regions in the plane formed by n lines in
general position is n(n+1)

2 + 1.

A set of lines are in general position if (1) no two lines are
parallel and (2) no three lines intersect at a common point.

We observe that n(n+1)
2 = 1 + 2 + · · · + n.

So, it suffices to prove the following:

Lemma
Adding one more line (the n-th line) to n − 1 lines in
general position in the plane increases the number of
regions by n.
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A Simple Coloring Problem

Theorem 2.6
The regions formed by any number of lines in the plane
can be colored with only two colors (such that neigh-
boring regions have different colors).
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A Summation Problem

1 = 1

3 + 5 = 8

7 + 9 + 11 = 27

13 + 15 + 17 + 19 = 64

21 + 23 + 25 + 27 + 29 = 125

Theorem
The sum of row n in the triangle is n3.

Lemma
The last number in row n + 1 is n2 + 3n + 1.
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A Simple Inequality

Theorem 2.7
1
2 + 1

4 + 1
8 + · · · + 1

2n < 1, for all n ≥ 1.

There are at least two ways to select n terms from n + 1
terms.
1. (1

2 + 1
4 + 1

8 + · · · + 1
2n ) + 1

2n+1 .

2. 1
2 + (1

4 + 1
8 + · · · + 1

2n + 1
2n+1 ).

The second one leads to a successful inductive proof:

1
2 + (1

4 + 1
8 + · · · + 1

2n + 1
2n+1 )

= 1
2 + 1

2(1
2 + 1

4 + · · · + 1
2n−1 + 1

2n )

< 1
2 + 1

2

= 1
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Euler’s Formula

Source: Manber 1989
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Euler’s Formula (cont.)

Theorem 2.8
The number of vertices (V ), edges (E), and faces (F ) in
an arbitrary connected planar graph are related by the
formula V + F = E + 2.

The proof is by induction on the number of faces.
Base case: graphs with only one face are trees . . .

Lemma
A tree with n vertices has n − 1 edges.

Inductive step: for a graph with more than one faces, there
must be a cycle in the graph. Remove one edge from the
cyle . . .
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A Problem in Graph Theory

Consider a graph G = (V,E).

The subgraph induced by U is a subgraph H = (U,F )
such that F consists of all the edges in E both of whose
vertices belong to U .

An independent set S in a graph is a set of vertices
such that no two vertices in S are adjacent.

Theorem 2.9
Let G = (V,E) be a directed graph. There exists an
independent set S(G) in G such that every vertex in G

can be reached from a vertex in S(G) by a path of length
at most 2.
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Gray Codes

A Gray code for n objects is an encoding scheme for
naming the n objects such that the n names can be
arranged in a circular list where any two adjacent names
differ by only one bit .

Theorem 2.10
There exist Gray codes of length k

2 for any positive even
integer k.

Theorem 2.10+
There exist Gray codes of length log2 k for any positive
integer k that is a power of 2.
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Gray Codes (cont.)

Source: Manber 1989 (adapted)

Note: j in the figure equals 2(k − 1) and hence j + 2 equals
2k.
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Gray Codes (cont.)

Theorem 2.11−
There exist Gray codes of length ⌈log2 k⌉ for any positive
even integer k.

To generalize, we allow a Gray code to be open.

Theorem 2.11
There exist Gray codes of length ⌈log2 k⌉ for any positive
integer k ≥ 2. The Gray codes for the even values of k

are closed, and the Gray codes for odd values of k are
open.
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Gray Codes (cont.)

Source: Manber 1989 (adapted)
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Gray Codes (cont.)

Source: Manber 1989 (adapted)
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Edge-Disjoint Paths

Two paths in a graph are said to be edge disjoint if they do
not contain the same edge.

Theorem 2.12
Let G = (V,E) be a connected undirected graph, and
let O be the set of vertices with odd degrees. We can
divide the vertices in O into pairs and find edge-disjoint
paths connecting vertices in each pair. (Note: |O| is
even.)
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Edge-Disjoint Paths (cont.)

Theorem 2.12+
Let G = (V,E) be an undirected graph, and let O be
the set of vertices with odd degrees. We can divide
the vertices in O into pairs and find edge-disjoint paths
connecting vertices in each pair.
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Arithmetic vs. Geometric Mean

Theorem 2.13
If x1, x2, . . . , xn are all positive numbers, then

(x1x2 · · · xn)
1

n ≤
x1 + x2 + · · · + xn

n
.

First use the standard induction to prove the case of powers
of 2 and then use the reversed induction principle below to
prove for all natural numbers.

If a statement P , with a parameter n, is true for an in-
finite subset of the natural numbers, and if, for every
n > 1, the truth of P for n implies its truth for n − 1, then
P is true for all natural numbers.
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Arithmetic vs. Geometric Mean (cont.)

For all powers of 2, i.e., n = 2k, k ≥ 1: by induction on k.

Base case: (x1x2)
1

2 ≤ x1+x2

2 , squaring both sides . . ..

Inductive step:

(x1x2 · · · x2k+1)
1

2k+1

= [(x1x2 · · · x2k+1)
1

2k ]
1

2

= [(x1x2 · · · x2k)
1

2k (x2k+1x2k+2 · · · x2k+1)
1

2k ]
1

2

≤
(x1x2···x2k )

1

2k +(x
2k+1

x
2k+2

···x
2k+1)

1

2k

2 , from the base case

≤
x1+x2+···+x

2k

2k
+

x
2k+1

+x
2k+2

+···+x
2k+1

2k

2 , from the Ind. Hypo.

=
x1+x2+···+x

2k+1

2k+1
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Arithmetic vs. Geometric Mean (cont.)

For all natural numbers: by reversed induction on n.

Base case: the theorem holds for all powers of 2.

Inductive step: observe that

x1 + x2 + · · · + xn−1

n − 1
=

x1 + x2 + · · · + xn−1 + x1+x2+···+xn−1

n−1

n
.
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Arithmetic vs. Geometric Mean (cont.)

(x1x2 · · · xn−1(
x1+x2+···+xn−1

n−1
))

1

n ≤
x1+x2+···+xn−1+

x1+x2+···+xn−1

n−1

n

(from the Ind. Hypo.)

(x1x2 · · · xn−1(
x1+x2+···+xn−1

n−1
))

1

n ≤ x1+x2+···+xn−1

n−1

(x1x2 · · · xn−1(
x1+x2+···+xn−1

n−1
)) ≤ (x1+x2+···+xn−1

n−1
)n

(x1x2 · · · xn−1) ≤ (x1+x2+···+xn−1

n−1
)n−1

(x1x2 · · · xn−1)
1

n−1 ≤ (x1+x2+···+xn−1

n−1
)
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Number Conversion

Algorithm Convert_to_Binary (n);
begin

t := n;
k := 0;
while t > 0 do

k := k + 1;
b[k] := t mod 2;
t := t div 2;

end
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Number Conversion (cont.)

Theorem 2.14
When Algorithm Convert_to_Binary terminates, the bi-
nary representation of n is stored in the array b.

Lemma
If m is the integer represented by the binary array b[1..k],
then n = t · 2k + m is a loop invariant of the while loop.
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