Data Structures
(Based on [Manber 1989])

Yih-Kuen Tsay

Dept. of Information Management

National Taiwan University

Algorithms 2009: Data Structures — 1/16

Heaps

A (max) heap Is a binary tree whose keys satisfy the

heap property: the key of every node is greater than or
equal to the key of any of its children.

It supports the two basic operations of a priority queue:
. Insert the key z into the heap.

. remove and return the largest key from the
heap.

Algorithms 2009: Data Structures — 2/16

Heaps (cont.)

A binary tree can be represented implicitly by an array
A as follows:

1. The root Is stored in A[1].

2. The left child of A[i] Is stored Iin A[2:] and the right
child is stored Iin A[2i 4 1].

\
1 |
i
H
£ 4

IM S5 NTU Algorithms 2009: Data Structures — 3/16

Heaps (cont.)

Algorithm Remove_Max_from_Heap (A, n);
If n = 0then print “the heap is empty”
else Top _of the_Heap := A|l];

Al == Anl;ni=n —1;
parent = 1; child = 2;
while child <n — 1 do
if Alchild] < Alchild + 1] then
child = child + 1;
if Alchild] > Alparent]| then
swap(Alparent|, Alchild]);
parent .= chaild,
child := 2 * child
else child :=n

Algorithms 2009: Data Structures — 4/16

Heaps (cont.)

Algorithm Insert_to Heap (A4,n,z);
begin
n.=n-+1;
Aln] = x;
child ‘= n;
parent = n div 2;
while parent > 1 do
If Alparent] < Alchild] then
swap(Alparent], Alchild]);
child .= parent,
parent .= parent div 2
else parent ;=0
end

i
1= Nay
O
5,1
\
1 |
il

M S NTU Algorithms 2009: Data Structures — 5/16

AVL Trees

Definition: An AVL tree is a binary search tree such
that, for every node, the difference between the heights
of its left and right subtrees is at most 1 (the height of
an empty tree is defined as 0).

This definition guarantees a maximal height of O(logn) for
any AVL tree of n nodes.

\ 3|1
IM m‘* NTU Algorithms 2009: Data Structures — 6/16

Tl M
-

AVL Trees (cont.)

new' new

fa) (b)

Figure 4.13 Insertions that invalidate the AVL property.

Source: Manber 1989

Algorithms 2009: Data Structures — 7/16

AVL Trees (cont.)

new
new

(a) (b)

Figure 4.14 A single rotation: (a) Before. (b) After.

Source: Manber 1989

Algorithms 2009: Data Structures — 8/16

AVL Trees (cont.)

(a) (b)

Figure 4.15 A double rotation: (a) Before. (b) After.

Source: Manber 1989

Algorithms 2009: Data Structures — 9/16

Union-Find

There are n elements z1, z9, - - -, z, divided into groups.
Initially, each element is in a group by itself.
Two operations on the elements and groups:
. returns the name of A’s group.
. combines A’s and B’s groups to form a
new group with a unigue name.

To tell if two elements are in the same group, one may
Issue a find operation for each element and see Iif the
returned names are the same.

IM N NTU Algorithms 2009: Data Structures — 10/16

Union-Find (cont.)

A nil B nil E nil

G D

Figure 4.16 The representation for the union-find problem.

Source: Manber 1989

Algorithms 2009: Data Structures — 11/16

Balancing

The root also stores the number of elements in (i.e., the
size of) its group.

To balance the tree resulted from a union operation, let
the smaller group join the larger group and update the
size of the larger group accordingly.

Theorem 4.2
If balancing is used, then any tree of height ~ must con-

tain at least 2" elements.

Any sequence of m find or union operations (where
m > n) takes O(mlogn) steps.

Algorithms 2009: Data Structures — 12/16

Union-Find (cont.)

—

(a) (b)
Figure 4.17 Path compression: (a) Before. ("b) After.

Source: Manber 1989

Algorithms 2009: Data Structures — 13/16

Effect of Path Compression

Theorem 4.3

If both balancing and path compression are used, any
sequence of m find or union operations (where m > n)
takes O(mlog™ n) steps.

The value of log™ n Intuitively equals the number of times
that one has to apply log to » to bring its value down to 1.

G El Y
IM mﬁ NTU Algorithms 2009: Data Structures — 14/16

Code for Union-Find

Al gorithmUnion_Find Init(A n);

begi n
for 1 := 1 to n do
Ali1].parent := nil;
Ali1].size :=1
end
Al gorithm Find(a);
begi n
I f Ala].parent <> nil then
Al a] . parent := Find(Ala].parent);
Find := Ala].parent;
el se
Find := a
end

W[l
IM %2 NTU

i

Algorithms 2009: Data Structures — 15/16

LA g
%2, B
W, o
I M Nl WV
S

i
1= Nay
- N\,
5
\
1 |
3 |

Code for Union-Find (cont.)

Al gorithm Union(a, b);

begi n

X .

y

| f

end

NTU

— X 1l N

| f Al X]
ALy,
Al X

el se

Al X] .

ALyl .

Fi nd(a);
Fi nd(Db) ;
<>y then
].size > Aly].size then
. parent : = X;
.Slze .= Al x].size + Aly].slze;

par ent

:y’
size := Aly].size + Al Xx].size

Algorithms 2009: Data Structures — 16/16

	Heaps
	Heaps (cont.)
	Heaps (cont.)
	Heaps (cont.)
	AVL Trees
	AVL Trees (cont.)
	AVL Trees (cont.)
	AVL Trees (cont.)
	Union-Find
	Union-Find (cont.)
	Balancing
	Union-Find (cont.)
	Effect of Path Compression
	Code for Union-Find
	Code for Union-Find (cont.)

