
IM NTU

Data Structures
(Based on [Manber 1989])

Yih-Kuen Tsay

Dept. of Information Management

National Taiwan University

Algorithms 2009: Data Structures – 1/16



IM NTU

Heaps

A (max) heap is a binary tree whose keys satisfy the
heap property: the key of every node is greater than or
equal to the key of any of its children.

It supports the two basic operations of a priority queue:
Insert(x): insert the key x into the heap.
Remove(): remove and return the largest key from the
heap.

Algorithms 2009: Data Structures – 2/16



IM NTU

Heaps (cont.)

A binary tree can be represented implicitly by an array
A as follows:
1. The root is stored in A[1].
2. The left child of A[i] is stored in A[2i] and the right

child is stored in A[2i + 1].

Algorithms 2009: Data Structures – 3/16



IM NTU

Heaps (cont.)

Algorithm Remove_Max_from_Heap (A, n);
if n = 0 then print “the heap is empty”
else Top_of_the_Heap := A[1];

A[1] := A[n]; n := n − 1;
parent := 1; child := 2;
while child ≤ n − 1 do

if A[child] < A[child + 1] then
child := child + 1;

if A[child] > A[parent] then
swap(A[parent], A[child]);
parent := child;
child := 2 ∗ child

else child := n

Algorithms 2009: Data Structures – 4/16



IM NTU

Heaps (cont.)

Algorithm Insert_to_Heap (A, n, x);
begin

n := n + 1;
A[n] := x;
child := n;
parent := n div 2;
while parent ≥ 1 do

if A[parent] < A[child] then
swap(A[parent], A[child]);
child := parent;
parent := parent div 2

else parent := 0
end

Algorithms 2009: Data Structures – 5/16



IM NTU

AVL Trees

Definition: An AVL tree is a binary search tree such
that, for every node, the difference between the heights
of its left and right subtrees is at most 1 (the height of
an empty tree is defined as 0).

This definition guarantees a maximal height of O(log n) for
any AVL tree of n nodes.

Algorithms 2009: Data Structures – 6/16



IM NTU

AVL Trees (cont.)

Source: Manber 1989
Algorithms 2009: Data Structures – 7/16



IM NTU

AVL Trees (cont.)

Source: Manber 1989

Algorithms 2009: Data Structures – 8/16



IM NTU

AVL Trees (cont.)

Source: Manber 1989
Algorithms 2009: Data Structures – 9/16



IM NTU

Union-Find

There are n elements x1, x2, · · · , xn divided into groups.
Initially, each element is in a group by itself.

Two operations on the elements and groups:
find(A): returns the name of A’s group.
union(A,B): combines A’s and B’s groups to form a
new group with a unique name.

To tell if two elements are in the same group, one may
issue a find operation for each element and see if the
returned names are the same.

Algorithms 2009: Data Structures – 10/16



IM NTU

Union-Find (cont.)

Source: Manber 1989

Algorithms 2009: Data Structures – 11/16



IM NTU

Balancing

The root also stores the number of elements in (i.e., the
size of) its group.

To balance the tree resulted from a union operation, let
the smaller group join the larger group and update the
size of the larger group accordingly.

Theorem 4.2
If balancing is used, then any tree of height h must con-
tain at least 2h elements.

Any sequence of m find or union operations (where
m ≥ n) takes O(m log n) steps.

Algorithms 2009: Data Structures – 12/16



IM NTU

Union-Find (cont.)

Source: Manber 1989
Algorithms 2009: Data Structures – 13/16



IM NTU

Effect of Path Compression

Theorem 4.3
If both balancing and path compression are used, any
sequence of m find or union operations (where m ≥ n)
takes O(m log∗ n) steps.

The value of log∗ n intuitively equals the number of times
that one has to apply log to n to bring its value down to 1.

Algorithms 2009: Data Structures – 14/16



IM NTU

Code for Union-Find

Algorithm Union_Find_Init(A,n);
begin
for i := 1 to n do

A[i].parent := nil;
A[i].size := 1

end

Algorithm Find(a);
begin
if A[a].parent <> nil then

A[a].parent := Find(A[a].parent);
Find := A[a].parent;

else
Find := a

end

Algorithms 2009: Data Structures – 15/16



IM NTU

Code for Union-Find (cont.)

Algorithm Union(a,b);
begin
x := Find(a);
y := Find(b);
if x <> y then

if A[x].size > A[y].size then
A[y].parent := x;
A[x].size := A[x].size + A[y].size;

else
A[x].parent := y;
A[y].size := A[y].size + A[x].size

end

Algorithms 2009: Data Structures – 16/16


	Heaps
	Heaps (cont.)
	Heaps (cont.)
	Heaps (cont.)
	AVL Trees
	AVL Trees (cont.)
	AVL Trees (cont.)
	AVL Trees (cont.)
	Union-Find
	Union-Find (cont.)
	Balancing
	Union-Find (cont.)
	Effect of Path Compression
	Code for Union-Find
	Code for Union-Find (cont.)

