
IM NTU

Design by Induction
(Based on [Manber 1989])

Yih-Kuen Tsay

Dept. of Information Management

National Taiwan University

Algorithms 2009: Design by Induction – 1/29



IM NTU

Introduction

It is not necessary to design the steps required to solve
a problem from scratch.

It is sufficient to guarantee that
1. it is possible to solve one small instance or a few

small instances of the problem (the base case), and
2. a solution to every problem/instance can be

constructed from solutions to smaller
problems/instances (the inductive step).

Algorithms 2009: Design by Induction – 2/29



IM NTU

Evaluating Polynomials

The Problem Given a sequence of real numbers an,
an−1, · · ·, a1, a0, and a real number x, compute the value
of the polynomial Pn(x) = anxn +an−1x

n−1 + · · ·+a1x+a0.

Motivation: different approaches to the inductive step may
result in algorithms of very different time complexities.

Algorithms 2009: Design by Induction – 3/29



IM NTU

Evaluating Polynomials (cont.)

Let Pn−1(x) = an−1x
n−1 + · · · + a1x + a0.

Induction hypothesis (first attempt)
We know how to evaluate a polynomial
represented by the input an−1, · · ·, a1, a0, at the
point x, i.e., we know how to compute Pn−1(x).

Pn(x) = anxn + Pn−1(x).

Algorithms 2009: Design by Induction – 4/29



IM NTU

Evaluating Polynomials (cont.)

Induction hypothesis (second attempt)
We know how to compute Pn−1(x), and we know
how to compute xn−1.

Pn(x) = anx(xn−1) + Pn−1(x).

Algorithms 2009: Design by Induction – 5/29



IM NTU

Evaluating Polynomials (cont.)

Let P ′

n−1(x) = anxn−1 + an−1x
n−2 + · · · + a1.

Induction hypothesis (final attempt)
We know how to evaluate a polynomial
represented by the coefficients an, an−1, · · ·, a1, at
the point x, i.e., we know how to compute P ′

n−1(x).

Pn(x) = P ′

n(x) = P ′

n−1(x) · x + a0.

Algorithms 2009: Design by Induction – 6/29



IM NTU

Evaluating Polynomials (cont.)

More generally,


















P ′

0(x) = an

P ′

i (x) = P ′

i−1(x) · x + an−i, for 1 ≤ i ≤ n

Algorithms 2009: Design by Induction – 7/29



IM NTU

Evaluating Polynomials (cont.)

Algorithm Polynomial_Evaluation (ā, x);
begin

P := an;
for i := 1 to n do

P := x ∗ P + an−i

end

This algorithm is known as Horner’s rule.

Algorithms 2009: Design by Induction – 8/29



IM NTU

Maximal Induced Subgraph

The Problem Given an undirected graph G = (V,E)
and an integer k, find an induced subgraph H = (U,F )
of G of maximum size such that all vertices of H have
degree ≥ k (in H), or conclude that no such induced
subgraph exists.

Design Idea: in the inductive step, we try to remove one
vertex (that cannot possibly be part of the solution) to get a
smaller instance.

Algorithms 2009: Design by Induction – 9/29



IM NTU

One-to-One Mapping

The Problem Given a finite set A and a mapping f

from A to itself, find a subset S ⊆ A with the maximum
number of elements, such that
(1) the function f maps every element of S to another
element of S (i.e., f maps S into itself), and
(2) no two elements of S are mapped to the same ele-
ment (i.e., f is one-to-one when restricted to S).

Design Idea: similar to the previous problem; in the
inductive step, we try to remove one element (that cannot
possibly be part of the solution) to get a smaller instance.

Algorithms 2009: Design by Induction – 10/29



IM NTU

One-to-One Mapping (cont.)

Algorithm Mapping (f, n);
begin

S := A;
for j := 1 to n do c[j] := 0;
for j := 1 to n do increment c[f [j]];
for j := 1 to n do

if c[j] = 0 then put j in Queue;
while Queue not empty do

remove i from the top of Queue;
S := S − {i};
decrement c[f [i]];
if c[f [i]] = 0 then put f [i] in Queue

end

Algorithms 2009: Design by Induction – 11/29



IM NTU

Celebrity

The Problem Given an n × n adjacency matrix, de-
termine whether there exists an i (the “celebrity”) such
that all the entries in the i-th column (except for the ii-th
entry) are 1, and all the entries in the i-th row (except
for the ii-th entry) are 0.

Note: A celebrity corresponds to a sink of the directed
graph.

Note: Every directed graph has at most one sink.

Motivation: the trivial solution has a time complexity of
O(n2). Can we do better, in O(n)?

Algorithms 2009: Design by Induction – 12/29



IM NTU

Celebrity (cont.)

Algorithm Celebrity (Know);
begin

i := 1;
j := 2;
next := 3;
while next ≤ n + 1 do

if Know[i, j] then i := next

else j := next;
next := next + 1;

if i = n + 1 then candidate := j

else candidate := i;

Algorithms 2009: Design by Induction – 13/29



IM NTU

Celebrity (cont.)

wrong := false;
k := 1;
Know[candidate, candidate] := false;
while not wrong and k ≤ n do

if Know[candidate, k] then wrong := true;
if not Know[k, candidate] then

if candidate 6= k then wrong := true;
k := k + 1;

if not wrong then celebrity := candidate

else celebrity := 0;
end

Algorithms 2009: Design by Induction – 14/29



IM NTU

The Skyline Problem

The Problem Given the exact locations and shapes
of several rectangular buildings in a city, draw the sky-
line (in two dimension) of these buildings, eliminating
hidden lines.

Motivation: different approaches to the inductive step may
result in algorithms of very different time complexities.

Compare: adding buildings one by one to an existing
skyline vs. merging two skylines of about the same size

Algorithms 2009: Design by Induction – 15/29



IM NTU

Representation of a Skyline

(1,11,5), (2,6,7), (3,13,9), (12,7,16), (14,3,25), (19,18,22),
(23,13,29), and (24,4,28).

0 5 10 15 20 25 30

Algorithms 2009: Design by Induction – 16/29



IM NTU

Representation of a Skyline (cont.)

(1,11,3,13,9,0,12,7,16,3,19,18,22,3,23,13,29).

0 5 10 15 20 25 30

Algorithms 2009: Design by Induction – 17/29



IM NTU

Adding a Building

Add (5,9,26) to
(1,11,3,13,9,0,12,7,16,3,19,18,22,3,23,13,29).

0 5 10 15 20 25 30

The skyline becomes
(1,11,3,13,9,9,19,18,22,9,23,13,29).

Algorithms 2009: Design by Induction – 18/29



IM NTU

Merging Two Skylines

Algorithms 2009: Design by Induction – 19/29



IM NTU

Balance Factors in Binary Trees

The Problem Given a binary tree T with n nodes, com-
pute the balance factors of all nodes.

The balance factor of a node is defined as the difference
between the height of the node’s left subtree and the height
of the node’s right subtree.

Motivation: an example of why we must strengthen the
hypothesis (and hence the problem to be solved).

Algorithms 2009: Design by Induction – 20/29



IM NTU

Balance Factors in Binary Trees (cont.)

Algorithms 2009: Design by Induction – 21/29



IM NTU

Balance Factors in Binary Trees (cont.)

Induction hypothesis
We know how to compute balance factors of all
nodes in trees that have < n nodes.

Stronger induction hypothesis
We know how to compute balance factors and
heights of all nodes in trees that have < n nodes.

Algorithms 2009: Design by Induction – 22/29



IM NTU

Maximum Consecutive Subsequence

The Problem Given a sequence x1, x2, · · ·, xn of real
numbers (not necessarily positive) find a subsequence
xi, xi+1, · · ·, xj (of consecutive elements) such that the
sum of the numbers in it is maximum over all subse-
quences of consecutive elements.

Example:
In the sequence (2,−3, 1.5,−1, 3,−2,−3, 3), the maximum
subsequence is (1.5,−1, 3).

Motivation: another example of strengthening the
hypothesis.

Algorithms 2009: Design by Induction – 23/29



IM NTU

Maximum Consecutive Subseq. (cont.)

Induction hypothesis
We know how to find the maximum subsequence
in sequences of size < n.

Stronger induction hypothesis
We know how to find, in sequences of size < n,
the maximum subsequence overall and the
maximum subsequence that is a suffix.

Algorithms 2009: Design by Induction – 24/29



IM NTU

Maximum Consecutive Subseq. (cont.)

Algorithm Max_Consec_Subseq (X,n);
begin

Global_Max := 0;
Suffix_Max := 0;
for i := 1 to n do

if x[i] + Suffix_Max > Global_Max then
Suffix_Max := Suffix_Max + x[i];
Global_Max := Suffix_Max

else if x[i] + Suffix_Max > 0 then
Suffix_Max := Suffix_Max + x[i]

else Suffix_Max := 0
end

Algorithms 2009: Design by Induction – 25/29



IM NTU

The Knapsack Problem

The Problem Given an integer K and n items of differ-
ent sizes such that the i-th item has an integer size ki,
find a subset of the items whose sizes sum to exactly
K, or determine that no such subset exists.

Design Idea: use strong induction so that solutions to all
smaller instances may be used.

Algorithms 2009: Design by Induction – 26/29



IM NTU

The Knapsack Problem (cont.)

Let P (n,K) denote the problem where n is the number
of items and K is the size of the knapsack.

Induction hypothesis
We know how to solve P (n − 1,K).

Stronger induction hypothesis
We know how to solve P (n− 1, k), for all 0 ≤ k ≤ K.

Algorithms 2009: Design by Induction – 27/29



IM NTU

The Knapsack Problem (cont.)

An example of the table constructed for the knapsack
problem:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

k1= 2 O - I - - - - - - - - - - - - - -

k2 = 3 O - O I - I - - - - - - - - - - -

k3 = 5 O - O O - O - I I - I - - - - - -

k4 = 6 O - O O - O I O O I O I - I I - I

“I”: a solution containing this item has been found.
“O”: a solution without this item has been found.
“-”: no solution has yet been found.

Algorithms 2009: Design by Induction – 28/29



IM NTU

The Knapsack Problem (cont.)

Algorithm Knapsack (S,K);
P [0, 0].exist := true;
for k := 1 to K do

P [0, k].exist := false;
for i := 1 to n do

for k := 0 to K do
P [i, k].exist := false;
if P [i − 1, k].exist then

P [i, k].exist := true;
P [i, k].belong := false

else if k − S[i] ≥ 0 then
if P [i − 1, k − S[i]].exist then

P [i, k].exist := true;
P [i, k].belong := true

Algorithms 2009: Design by Induction – 29/29


	Introduction
	Evaluating Polynomials
	Evaluating Polynomials (cont.)
	Evaluating Polynomials (cont.)
	Evaluating Polynomials (cont.)
	Evaluating Polynomials (cont.)
	Evaluating Polynomials (cont.)
	Maximal Induced Subgraph
	One-to-One Mapping
	One-to-One Mapping (cont.)
	Celebrity
	Celebrity (cont.)
	Celebrity (cont.)
	The Skyline Problem
	Representation of a Skyline
	Representation of a Skyline (cont.)
	Adding a Building
	Merging Two Skylines
	Balance Factors in Binary Trees
	large Balance Factors in Binary Trees (cont.)
	large Balance Factors in Binary Trees (cont.)
	large Maximum Consecutive Subsequence
	large Maximum Consecutive Subseq. (cont.)
	large Maximum Consecutive Subseq. (cont.)
	The Knapsack Problem
	The Knapsack Problem (cont.)
	The Knapsack Problem (cont.)
	The Knapsack Problem (cont.)

