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Introduction

It is not necessary to design the steps required to solve
a problem from scratch.

It is sufficient to guarantee that
1. it is possible to solve one small instance or a few

small instances of the problem (the base case), and
2. a solution to every problem/instance can be

constructed from solutions to smaller
problems/instances (the inductive step).
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Evaluating Polynomials

The Problem Given a sequence of real numbers an,
an−1, · · ·, a1, a0, and a real number x, compute the value
of the polynomial Pn(x) = anxn +an−1x

n−1 + · · ·+a1x+a0.

Motivation: different approaches to the inductive step may
result in algorithms of very different time complexities.
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Evaluating Polynomials (cont.)

Let Pn−1(x) = an−1x
n−1 + · · · + a1x + a0.

Induction hypothesis (first attempt)
We know how to evaluate a polynomial
represented by the input an−1, · · ·, a1, a0, at the
point x, i.e., we know how to compute Pn−1(x).

Pn(x) = anxn + Pn−1(x).
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Evaluating Polynomials (cont.)

Induction hypothesis (second attempt)
We know how to compute Pn−1(x), and we know
how to compute xn−1.

Pn(x) = anx(xn−1) + Pn−1(x).
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Evaluating Polynomials (cont.)

Let P ′

n−1(x) = anxn−1 + an−1x
n−2 + · · · + a1.

Induction hypothesis (final attempt)
We know how to evaluate a polynomial
represented by the coefficients an, an−1, · · ·, a1, at
the point x, i.e., we know how to compute P ′

n−1(x).

Pn(x) = P ′

n(x) = P ′

n−1(x) · x + a0.
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Evaluating Polynomials (cont.)

More generally,


















P ′

0(x) = an

P ′

i (x) = P ′

i−1(x) · x + an−i, for 1 ≤ i ≤ n
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Evaluating Polynomials (cont.)

Algorithm Polynomial_Evaluation (ā, x);
begin

P := an;
for i := 1 to n do

P := x ∗ P + an−i

end

This algorithm is known as Horner’s rule.
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Maximal Induced Subgraph

The Problem Given an undirected graph G = (V,E)
and an integer k, find an induced subgraph H = (U,F )
of G of maximum size such that all vertices of H have
degree ≥ k (in H), or conclude that no such induced
subgraph exists.

Design Idea: in the inductive step, we try to remove one
vertex (that cannot possibly be part of the solution) to get a
smaller instance.
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One-to-One Mapping

The Problem Given a finite set A and a mapping f

from A to itself, find a subset S ⊆ A with the maximum
number of elements, such that
(1) the function f maps every element of S to another
element of S (i.e., f maps S into itself), and
(2) no two elements of S are mapped to the same ele-
ment (i.e., f is one-to-one when restricted to S).

Design Idea: similar to the previous problem; in the
inductive step, we try to remove one element (that cannot
possibly be part of the solution) to get a smaller instance.
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One-to-One Mapping (cont.)

Algorithm Mapping (f, n);
begin

S := A;
for j := 1 to n do c[j] := 0;
for j := 1 to n do increment c[f [j]];
for j := 1 to n do

if c[j] = 0 then put j in Queue;
while Queue not empty do

remove i from the top of Queue;
S := S − {i};
decrement c[f [i]];
if c[f [i]] = 0 then put f [i] in Queue

end
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Celebrity

The Problem Given an n × n adjacency matrix, de-
termine whether there exists an i (the “celebrity”) such
that all the entries in the i-th column (except for the ii-th
entry) are 1, and all the entries in the i-th row (except
for the ii-th entry) are 0.

Note: A celebrity corresponds to a sink of the directed
graph.

Note: Every directed graph has at most one sink.

Motivation: the trivial solution has a time complexity of
O(n2). Can we do better, in O(n)?
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Celebrity (cont.)

Algorithm Celebrity (Know);
begin

i := 1;
j := 2;
next := 3;
while next ≤ n + 1 do

if Know[i, j] then i := next

else j := next;
next := next + 1;

if i = n + 1 then candidate := j

else candidate := i;
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Celebrity (cont.)

wrong := false;
k := 1;
Know[candidate, candidate] := false;
while not wrong and k ≤ n do

if Know[candidate, k] then wrong := true;
if not Know[k, candidate] then

if candidate 6= k then wrong := true;
k := k + 1;

if not wrong then celebrity := candidate

else celebrity := 0;
end
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The Skyline Problem

The Problem Given the exact locations and shapes
of several rectangular buildings in a city, draw the sky-
line (in two dimension) of these buildings, eliminating
hidden lines.

Motivation: different approaches to the inductive step may
result in algorithms of very different time complexities.

Compare: adding buildings one by one to an existing
skyline vs. merging two skylines of about the same size
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Representation of a Skyline

(1,11,5), (2,6,7), (3,13,9), (12,7,16), (14,3,25), (19,18,22),
(23,13,29), and (24,4,28).

0 5 10 15 20 25 30
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Representation of a Skyline (cont.)

(1,11,3,13,9,0,12,7,16,3,19,18,22,3,23,13,29).

0 5 10 15 20 25 30
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Adding a Building

Add (5,9,26) to
(1,11,3,13,9,0,12,7,16,3,19,18,22,3,23,13,29).

0 5 10 15 20 25 30

The skyline becomes
(1,11,3,13,9,9,19,18,22,9,23,13,29).
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Merging Two Skylines
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Balance Factors in Binary Trees

The Problem Given a binary tree T with n nodes, com-
pute the balance factors of all nodes.

The balance factor of a node is defined as the difference
between the height of the node’s left subtree and the height
of the node’s right subtree.

Motivation: an example of why we must strengthen the
hypothesis (and hence the problem to be solved).

Algorithms 2009: Design by Induction – 20/29



IM NTU

Balance Factors in Binary Trees (cont.)
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Balance Factors in Binary Trees (cont.)

Induction hypothesis
We know how to compute balance factors of all
nodes in trees that have < n nodes.

Stronger induction hypothesis
We know how to compute balance factors and
heights of all nodes in trees that have < n nodes.
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Maximum Consecutive Subsequence

The Problem Given a sequence x1, x2, · · ·, xn of real
numbers (not necessarily positive) find a subsequence
xi, xi+1, · · ·, xj (of consecutive elements) such that the
sum of the numbers in it is maximum over all subse-
quences of consecutive elements.

Example:
In the sequence (2,−3, 1.5,−1, 3,−2,−3, 3), the maximum
subsequence is (1.5,−1, 3).

Motivation: another example of strengthening the
hypothesis.
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Maximum Consecutive Subseq. (cont.)

Induction hypothesis
We know how to find the maximum subsequence
in sequences of size < n.

Stronger induction hypothesis
We know how to find, in sequences of size < n,
the maximum subsequence overall and the
maximum subsequence that is a suffix.
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Maximum Consecutive Subseq. (cont.)

Algorithm Max_Consec_Subseq (X,n);
begin

Global_Max := 0;
Suffix_Max := 0;
for i := 1 to n do

if x[i] + Suffix_Max > Global_Max then
Suffix_Max := Suffix_Max + x[i];
Global_Max := Suffix_Max

else if x[i] + Suffix_Max > 0 then
Suffix_Max := Suffix_Max + x[i]

else Suffix_Max := 0
end
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The Knapsack Problem

The Problem Given an integer K and n items of differ-
ent sizes such that the i-th item has an integer size ki,
find a subset of the items whose sizes sum to exactly
K, or determine that no such subset exists.

Design Idea: use strong induction so that solutions to all
smaller instances may be used.
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The Knapsack Problem (cont.)

Let P (n,K) denote the problem where n is the number
of items and K is the size of the knapsack.

Induction hypothesis
We know how to solve P (n − 1,K).

Stronger induction hypothesis
We know how to solve P (n− 1, k), for all 0 ≤ k ≤ K.
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The Knapsack Problem (cont.)

An example of the table constructed for the knapsack
problem:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

k1= 2 O - I - - - - - - - - - - - - - -

k2 = 3 O - O I - I - - - - - - - - - - -

k3 = 5 O - O O - O - I I - I - - - - - -

k4 = 6 O - O O - O I O O I O I - I I - I

“I”: a solution containing this item has been found.
“O”: a solution without this item has been found.
“-”: no solution has yet been found.

Algorithms 2009: Design by Induction – 28/29



IM NTU

The Knapsack Problem (cont.)

Algorithm Knapsack (S,K);
P [0, 0].exist := true;
for k := 1 to K do

P [0, k].exist := false;
for i := 1 to n do

for k := 0 to K do
P [i, k].exist := false;
if P [i − 1, k].exist then

P [i, k].exist := true;
P [i, k].belong := false

else if k − S[i] ≥ 0 then
if P [i − 1, k − S[i]].exist then

P [i, k].exist := true;
P [i, k].belong := true
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