Graph Algorithms

Yih-Kuen Tsay

Dept. of Information Management

National Taiwan University

—
alwan
S W
S
S
SN s

i@y

f,.n—;}
w._,x::‘f);NTU Algorithms 2009: Graph Algorithms — 1/71

The Konigsberg Bridges Problem

Figure 7.1 The Konigsberg bridges problem.

Source: Manber 1989

Can one start from one of the lands, cross every bridge

Algorithms 2009: Graph Algorithms — 2/71

The Konigsberg Bridges Problem (cont.)

Figure 7.2 The graph corresponding to the Konigsberg bridges problem.

Source: Manber 1989
Algorithms 2009: Graph Algorithms — 3/71

Graphs

A graph consists of a set of (or nodes) and a set of
(or links, each normally connecting two vertices) and
IS commonly denoted as , where

G 1s the name of the graph,
V IS the set of vertices, and

E Is the set of edges.

WE |
IM mﬁ NTU Algorithms 2009: Graph Algorithms — 4/71

Modeling with Graphs

Reachability
Shortest Routes
Scheduling

7 NTU Algorithms 2009: Graph Algorithms — 5/71

Graphs (cont.)

Undirected vs. Directed Graphs

Paths, Simple Paths, Tralls

Circuits, Cycles

Degrees, In-Degrees, Out-Degrees

Connected Graphs, Trees

Subgraphs, Induced Subgraphs, Spanning Trees

CAE i)
IM mﬁ NTU Algorithms 2009: Graph Algorithms — 6/71

Eulerian Graphs

The Problem Given an undirected connected graph
G = (V,FE) such that all the vertices have even de-

grees, find a circuit P such that each edge of E ap-
pears in P exactly once.

The circuit P in the problem statement is called an

Theorem

An undirected connected graph has an Eulerian cir-
cuit if and only if all of its vertices have even degrees.

IM\@%NTU

M

Algorithms 2009: Graph Algorithms — 7/71

Depth First Search

Figure 7.4 A DEFS for an undirected graph.

Source: Manber 1989

Algorithms 2009: Graph Algorithms — 8/71

Depth First Search (cont.)

Algorithm Depth_First_ Search (G, v);
begin
mark v;
perform preWORK on v;
for all edges (v, w) do
If w IS unmarked then
Depth_First_Search(G,w);
perform postWORK for (v, w)
end

i
1= Nay
- %N
5
Ay
1 |
3 |

II\/I“* NTU Algorithms 2009: Graph Algorithms — 9/71

Depth First Search (cont.)

Algorithm Refined DFS (G, v);
begin
mark v;
perform preWORK on v;
for all edges (v, w) do
If w Is unmarked then
Refined DFS(G,w);
perform postWORK for (v, w);
perform postWORK Il on v
end

i
1= Nay
%N
5
Ay
1 |
3 |

II\/I“‘ NTU Algorithms 2009: Graph Algorithms — 10/71

Connected Components

Algorithm Connected _Components (G);
begin
Component_ Number = 1,
while there is an unmarked vertex v do
Depth_First_Search(G,v)
(preWORK:
v.Component .= Component_Number);
Component__Number .= Component_Number + 1
end

iy,
p1_* Nag,
- NN
A
1 |
=

IM S NTU Algorithms 2009: Graph Algorithms — 11/71

DFS Numbers

Algorithm DFS_Numbering (G, v);
begin
DFS Number =1,
Depth_First_Search(G,v)
(preWORK:
v.DFS = DFS_ Number;
DFS Number .= DFS_Number + 1)
end

1= Nay
S~
N\
\
1 |
il

II\/I“’ NTU Algorithms 2009: Graph Algorithms — 12/71

he DFS Tree

Algorithm Build_DFS_Tree (G,v);
begin
Depth_First_Search(G,v)
(poStWORK:
If w was unmarked then
add the edge (v, w) to T);
end

i
1= Nay
%N
5
Ay
1 |
3 |

M # NTU Algorithms 2009: Graph Algorithms — 13/71

The DFS Tree (cont.)

.-\

Figure 7.9 A DFS tree for a directed graph.

Source: Manber 1989

Algorithms 2009: Graph Algorithms — 14/71

he DFS Tree (cont.)

Lemma 7.2

For an undirected graph G = (V, E), every edge c € E
either belongs to the DF'S tree T, or connects two
vertices of G, one of which is the ancestor of the
otherin T.

For undirected graphs, DFS avoids

Lemma 7.3

For a directed graph G = (V, E), If (v,w) IS an edge In
E such that v.DF'S_Number < w.DFS_Number, then
w IS a descendant of v inthe DFS tree T.

For directed graphs, cross edges must go “

M galwan ¢
£ \

.

- Algorithms 2009: Graph Algorithms — 15/71

Directed Cycles

The Problem Given a directed graph G = (V, E),
determine whether it contains a (directed) cycle.

Lemma /7.4
G contains a directed cycle if and only if G contains
a (relative to the DF'S tree).

IM Nt NTU Algorithms 2009: Graph Algorithms — 16/71

Directed Cycles (cont.)

Algorithm Find_a_Cycle (G);

begin
Depth_First_Search(G,v) [* arbitrary v */
(preWORK:
v.on_the_ path = true,
pPostWORK:
If w.on_the path then
Find_a_Cycle = true;
halt;
If w IS the last vertex on v’s list then
v.on_the_path = false;)
end

Tip,
p1_* Nag,
- NN
o\
1 |
3 |

II\/I“‘ NTU Algorithms 2009: Graph Algorithms — 17/71

Directed Cycles (cont.)

Algorithm Refined_Find_a Cycle (G);

begin
Refined_DFS(G,v) I* arbitrary v */
(preWORK:
v.on_the path .= true,
postWORK:

If w.on_the_ path then
Refined_ Find_a_Cycle .= true;
halt;
POoStWORK _II:
v.on_the_path = false)
end

i
A <Nyt
O
5,1
\
1 |
il

IM s NTU Algorithms 2009: Graph Algorithms — 18/71

Breadth-First Search

Figure 7.12 A BFS tree for a directed graph.

Source: Manber 1989

Algorithms 2009: Graph Algorithms — 19/71

Breadth-First Search (cont.)

Algorithm Breadth _First_ Search (G, v);
begin
mark v;
put v In a queue,;
while the queue is not empty do
remove vertex w from the queue;
perform preWORK on w;
for all edges (w, z) with x unmarked do
mark x;
add (w,z) tothe BFS tree T;
put x In the queue
end

s
IM m*‘s NTU Algorithms 2009: Graph Algorithms — 20/71

Breadth-First Search (cont.)

Lemma 7.5

If an edge (u, w) belongs to a BF'S tree such that « Is
a parent of w, then « has the minimal BFS number
among vertices with edges leading to w.

Lemma /.6
For each vertex w, the path from the rootto w In T Is
a shortest path from the root to w In G.

Lemma 7.7
If an edge (v,w) In £ does not belong to T

, then the level numbers of w and v
differ by at most 1.

NEl)
M mf NTU Algorithms 2009: Graph Algorithms — 21/71

Breadth-First Search (cont.)

Algorithm Simple_BFS (G, v);
begin
put v In a queue,
while the queue is not empty do
remove vertex w from the queue;
If w IS unmarked then
mark w;
perform preWORK on w;
for all edges (w, x) with x unmarked do
put x In the queue
end

(%)
IM m; NTU Algorithms 2009: Graph Algorithms — 22/71

Breadth-First Search (cont.)

Algorithm Simple_Nonrecursive DFS (G, v);
begin
push v to Stack;
while Stack 1S not empty do
pop vertex w from Stack;
If w IS unmarked then
mark w;
perform preWORK on w;
for all edges (w, x) with x unmarked do
push z to Stack
end

i
1= Nay
- N\,
5
Ay
1 |
3 |

II\/I“’ NTU Algorithms 2009: Graph Algorithms — 23/71

opological Sorting

The Problem Given a directed acyclic graph G =
(V, E) with n vertices, label the vertices from 1 to n
such that, if v is labeled k, then all vertices that can

be reached from v by a directed path are labeled with
labels > k.

Lemma 7.8

A directed acyclic graph always contains a vertex
with indegree 0.

IM Nt NTU Algorithms 2009: Graph Algorithms — 24/71

opological Sorting (cont.)

Algorithm Topological_Sorting (G);
Initialize v.indegree for all vertices; /* by DF'S */
G_label = 0;
for : :=1ton do
If v;.indegree = 0 then put v; In Queue;
repeat
remove vertex v from Queue;
G_label .= G_label + 1;
v.label ;= G_label,;
for all edges (v, w) do
w.indegree = w.indegree — 1;
If w.indegree = 0 then put w In Queue
until Queue IS empty

G
IM N5 NTU Algorithms 2009: Graph Algorithms — 25/71

N2

o\ |

|

5 |

58

X/
[T 4

Single-Source Shortest Paths

et

The Problem Given a directed graph G = (V, E') and
a vertex v, find shortest paths from v to all other ver-
tices of G.

w7 NTU Algorithms 2009: Graph Algorithms — 26/71

Shorted Paths: The Acyclic Case

Algorithm Acyclic_Shortest Paths (G, v, n);
{After performing a topological sorton G, ...}
begin
let =~ be the vertex labeled n;
If 2 4 v then
Acyclic_Shortest _Paths(G — z,v,n — 1);
for all w such that (w, z) € £ do
If w.SP+ length(w,z) < z.SP then
2.SP = w.SP + length(w, 2)
else v.SP =0
end

P py,
oNay 0
)\l\ 04,‘," N
- NN
o\
1 |
3 |

IM S NTU Algorithms 2009: Graph Algorithms — 27/71

he Acyclic Case (cont.)

Algorithm Imp_Acyclic_Shortest_Paths (G, v);
for all vertices w do w.SP = oo;
Initialize v.indegree for all vertices,
for ;== 1tondo
If v;.indegree = 0 then put v; In Queue,;
v.SP = 0;
repeat
remove vertex w from Queue;
for all edges (w, z) do
if w.SP + length(w,z) < z.SP then
2.SP = w.SP + length(w, 2);
zandegree (= z.andegree — 1,
If z.ondegree = 0 then put z In Queue
IM@\ until Queue is empty

NTU Algorithms 2009: Graph Algorithms — 28/71

Shortest Paths: The General Case

Algorithm Single_Source_Shortest_Paths (G, v);
begin
for all vertices w do
w.mark = false;
w.SP = oo;
v.SP = 0;
while there exists an unmarked vertex do
let w be an unmarked vertex s.t. w.SP IS minimal;
w.mark = true;
for all edges (w, z) such that = is unmarked do
If w.SP + length(w, z) < z.SP then
2.SP = w.SP + length(w, 2)
end

s
IM m*‘s NTU Algorithms 2009: Graph Algorithms — 29/71

The General Case (cont.)

a /) 5 b

2 9 3

. 4 d Z .

9 4 !

f: ° ?; 7 h
vial|b|lc|d|e| f|lg|h
a|lo| 1] 5|9 |e]|ew]|e]|ew
c|lo | s |3 |9 |w]|w]|«]|e
blo || s |G 7|=]|12]=]=
d|o | DIGI@| 1|8 |n2]|=]|«
eu@@@@slz I | e
hn@@@@@u TR
0 [O000[®] = [|[®
AREEROANR

Figure 7.18 An example of the single-source shortest-paths algorithm.

>

S nTU Source: Manber 1989 Algorithms 2009: Graph Algorithms — 30/71

Minimum-Weight Spanning Trees

The Problem Given an undirected connected
weighted graph G = (V, E), find a spanning tree T
of G of minimum weight.

Theorem

Let V; and V5 be a partition of V and E(V;, V5) be the
set of edges connecting nodes in 14 to nodes in V5.
The edge with the minimum weight in E(V7, V5) must
be in the minimum-cost spanning tree of G.

Algorithms 2009: Graph Algorithms — 31/71

Minimum-Weight Spanning Trees (cont.)

If cost(u,v) IS the smallest among E (14, V), then {u, v}
= Mmust be in the minimum spanning tree.

(A XN
IM Nt NTU Algorithms 2009: Graph Algorithms — 32/71

Minimum-Welight Spanning Trees (cont.)

Figure 7.19 Finding the next edge of the MCST.

Source: Manber 1989

Algorithms 2009: Graph Algorithms — 33/71

Minimum-Welight Spanning Trees (cont.)

Algorithm MST (G);
begin
initially 7" Is the empty set;
for all vertices w do
w.mark = false; w.cost .= o0,
let (z,y) be a minimum cost edge in G;
r.mark = true;
for all edges (z,z) do
z.edge = (x,2); z.cost := cost(x, 2);

T
"'044:'.-
- NN
A
4 |
H |

IM a, NTU Algorithms 2009: Graph Algorithms — 34/71

Minimum-Welight Spanning Trees (cont.)

while there exists an unmarked vertex do

let w be an unmarked vertex with minimal w.cost;
If w.cost = oo then

print “G Is not connected”; halt
else

w.mark = true;

add w.edge t0 T,

for all edges (w, z) do

If not z.mark then
If cost(w, z) < z.cost then
z.edge = (w, z); z.cost ;= cost(w, z)
end

,
p1_* Nag,
- NN
A
1 |
=

II\/I“’ NTU Algorithms 2009: Graph Algorithms — 35/71

Minimum-Welight Spanning Trees (cont.)

Algorithm Another MST (G);
begin
initially 7" I1s the empty set;
for all vertices w do

w.mark = false; w.cost .= oo,
r.mark = true; [* 2 1S an arbitrary vertex */

for all edges (z,z) do
z.edge = (x,2); z.cost := cost(x, 2);

v
P,
-\,,4’-“

- NN
A
=
=
'H

IM et NTU Algorithms 2009: Graph Algorithms — 36/71

Minimum-Welight Spanning Trees (cont.)

while there exists an unmarked vertex do
let w be an unmarked vertex with minimal w.cost;
If w.cost = oo then
print “G Is not connected”; halt
else
w.mark = true;
add w.edge t0 T,
for all edges (w, z) do
If not z.mark then
If cost(w, z) < z.cost then
z.edge = (w, 2);
z.cost 1= cost(w, 2)
end

,
p1_* Nag,
- NN
A
1 |
=

II\/I“’ NTU Algorithms 2009: Graph Algorithms — 37/71

Minimum-Weight Spanning Trees (cont.)

a / ’ b
- >~
2 9 3
4 7
(A O 2
® {f.- @
10 12 5
@ = 4 @
f 13 ¢ Il h
1 a b ¢ d e ¥ g h
v | - | vw(1) | v(6) oo v(9) oo oo o0 oo
a | - . v(6) | a(2) | v(9) oo oo 50 o
¢ | - - v(6) - c(4) oo c(10) oo oo
d | - - v(6) - - d(7) | ¢(10) | d(12) o0
Bl = - - [50) | c(D) | d(12) | =
e | - - - - - - c(10) | d(12) | e(5)
h | - - - - - - c(10) | (1) -
Il - - - : = - - h(11)

Figure 7.21 An example of the minimum-cost spanning-tree algorithm.

“=Y NTU Source: Manber 1989 Algorithms 2009: Graph Algorithms — 38/71

All Shortest Paths

The Problem Given aweighted graph G = (V, E) (di-
rected or undirected) with nonnegative weights, find
the minimum-length paths between all pairs of ver-
tices.

Algorithm All_Pairs_Shortest _Paths (W);
begin

{initialization omitted}

for m :=1ton do {the induction sequence}

for x :=1ton do
for y :=1ton do
If Wiz,m|+ Wim,y] < Wlzx,y] then
Wlx,y| := Wlx,m|] + W|m,y]

end

W E)
M mf NTU Algorithms 2009: Graph Algorithms — 39/71

ransitive Closure

The Problem Given adirected graph G = (V, E), find
Its transitive closure.

Algorithm Transitive_Closure (A);
begin

{initialization omitted}

for m :=1tondo

for x :=1ton do
for y :=1ton do
If Alx,m] and Alm,y] then
Alz,y| = true

end

N El)
IM mﬁ NTU Algorithms 2009: Graph Algorithms — 40/71

ransitive Closure (cont.)

Algorithm Improved_Transitive_Closure (A);
begin
{initialization omitted}
for m :=1ton do
for x :=1tondo
If Alx, m] then
for y :=1ton do
If Alm,y] then
Alz,y| = true
end

,
p1_* Nag,
- NN
A
1 |
=

IM S NTU Algorithms 2009: Graph Algorithms — 41/71

Biconnected Components

An undirected graph is If there are at least
two vertex-disjoint paths from every vertex to every
other vertex.

A graph is not biconnected if and only if there is a
vertex whose removal disconnects the graph. Such a
vertex is called an

A IS a maximal subset of the
edges such that its induced subgraph is biconnected

(namely, there iIs no other subset that contains it and

Induces a biconnected graph).

IM Nt NTU Algorithms 2009: Graph Algorithms — 42/71

Biconnected Components (cont.)

Figure 7.25 The structure of a nonbiconnected graph.

Kalwa,

Z P

By

iy

NTU Source: Manber 1989 Algorithms 2009: Graph Algorithms — 43/71

Biconnected Components (cont.)

Lemma 7.9

Two distinct edges ¢ and f belong to the same bi-
connected component if and only if there is a cycle
containing both of them.

Lemma /.10
Each edge belongs to exactly one biconnected com-
ponent.

s
IM m*‘s NTU Algorithms 2009: Graph Algorithms — 44/71

Biconnected Components (cont.)

(a) (b)

Figure 7.26 An edge that connects two different biconnected components. (a) The com-

ponents corresponding to the graph of Fig. 7.25 with the articulation points indicated. (b)
The biconnected component tree.

&)Y/, Source: Manber 1989

Algorithms 2009: Graph Algorithms — 45/71

Biconnected Components (cont.)

Figure 7.27 Computing the High values.

Salwa

Z P

By

iy

NTU Source: Manber 1989 Algorithms 2009: Graph Algorithms — 46/71

Biconnected Components (cont.)

Algorithm Biconnected _Components (G, v,n);

begin
for every vertex w do w.DFS_Number = 0;
DFS N :=n;
BC(v)

end

procedure BC (v);

begin
v.DFS_ Number ;= DFS N,
DFS N .=DFS N —1,
Insert v INnto Stack;
v.high = v.DFS_ Number,

Ay
3
i
H
£ 4

Azl
IM N2 NTU Algorithms 2009: Graph Algorithms — 47/71

Biconnected Components (cont.)

for all edges (v, w) do
Insert (v, w) INto Stack;
If w 1S not the parent of v then
If w.DFS_ Number =0 then
BC(w);
If w.high <v.DFS_Number then
remove all edges and vertices
from Stack until v IS reached,;
Insert v back into Stack;
v.high = max(v.high,w.high)
else
v.high = max(v.high,w.DFS_Number)
end

i
1= Nay
%N
5
Ay
1 |
3 |

II\/I“‘ NTU Algorithms 2009: Graph Algorithms — 48/71

Biconnected Components (cont.)

procedure BC (v);
begin
v.DFS_Number ;= DFS N,
DFS N .=DFS N —1,
v.high = v.DFS_Number,
for all edges (v, w) do
If w 1S not the parent of v then
Insert (v, w) INto Stack;
If w.DFS_ Number =0 then
BC(w);
If w.high <v.DFS_Number then
remove all edges from Stack
until (v, w) Is reached;
v.high = max(v.high,w.high)
else

(:} v.high = max(v.high,w.DFS_Number)
IM ,,f NTU Phd Algorithms 2009: Graph Algorithms — 49/71

iconnected C

a2

IM

lion, 5%

=

omponents (cont.)

.f .lﬂ .f
a] C d [r 2 h i) k1 om n 4 p
16 15 4 13 12 1 w9 & 7Y 6 5 4 3 2 |
] 1] - - -
b I6 15 - - - = = |
¢ 615 14 2 = :
d 6 15 14 13 z
e 6 15 14 13 s
d 6 15 14 15 I8 3
i 6 15 14 15 15 14
d 6 15 14 15 15 14 .
¢ 6 15 15 15 15 14 e
g 615 15 15 15 14 1§
16 15 15 15 15 14 1S s = £
6 15 15 15 14 13 1§
16 015 15 15 15 14 15 6 .
i WIS 15 15 15 14 15 16 8
i 6 15 15 15 15 14 1S5 16 8 7
k 6 15 IS 15 15 14 15 16 8 7 8
i 6 15 15 15 15 M4 15 16 & 8 B
I 16 15 IS 15 IS 14 15 16 & & R 8
j 16 1 15 15 15 M4 15 16 & 8 8 &
(i) 16 15 15 15 15 14 1S |6 & R 8 R
(W) 16 45 15 15 15 14 15 16 8 8 8 8
' 18 18 15 15 15 14 15 16 & & 8 8
a 6 16 (5 15 15 14 IS 16 8 8 & 8
mo 16 6 15 15 1S 14 15 16 & K OB K4
i 6. 6 15 15 IS 14 15 16 B 8% B B 4 16 -
o 16 B6 15 15 15 14 15 16 B R B 8 4 16 2
@ 16 16 15 15 15 14 1S 16 % & & 8 4 |& 2
pooI& E6 IS 15 15 14 15 16 R OR OB K& 4 16 2 46
n 6 6 15 15 15 14 IS5 & B X 8 K 4 In 2 16
mo 16 16 15 15 1S 14 15 16 & & B K I6 16 2 16
.\:._j- 16 M 15 15 15 1415 16 B X K X 06 16 2 06
Figure 7.29 An example of computing /figh values and biconnected components,

NTU Source: Manber 1989

Algorithms 2009:

Graph Algorithms — 50/71

Even-Length Cycles

The Problem Given a connected undirected graph
G = (V, F), determine whether it contains a cycle of
even length.

Theorem

Every biconnected graph that has more than one
edge and is not merely an odd-length cycle contains
an even-length cycle.

IM Nt NTU Algorithms 2009: Graph Algorithms — 51/71

Even-Length Cycles (cont.)

L@ V2

Vi

Vi+l

Figure 7.35 Finding an even-length cycle.

n gy

|

oy W

NTU Source: Manber 1989 Algorithms 2009: Graph Algorithms — 52/71

Strongly Connected Components

A directed graph is If there Is a
directed path from every vertex to every other vertex.

A IS a maximal subset of
the vertices such that its induced subgraph is strongly
connected (namely, there is no other subset that
contains it and induces a strongly connected graph).

|M\@%NTU

iy s
e

Algorithms 2009: Graph Algorithms — 53/71

Strongly Connected Components (cont.)

Lemma /.11

Two distinct vertices belong to the same strongly
connected component if and only if there is a circuit
containing both of them.

Lemma 7.12
Each vertex belongs to exactly one strongly con-
nected component.

i
A '\‘Jf‘.’..
- NN
A
1 |
=

IM # NTU Algorithms 2009: Graph Algorithms — 54/71

Strongly Connected Components (cont.)

Figure 7.30 A directed graph and its strongly connected component graph.

Source: Manber 1989

Algorithms 2009: Graph Algorithms — 55/71

Strongly Connected Components (cont.)

Figure 7.31 Adding an edge connecting two different strongly connected components.

Source: Manber 1989

Algorithms 2009: Graph Algorithms — 56/71

Strongly Connected Components (cont.)

Figure 7.32 The effect of cross edges.

¥’ NTu Source: Manber 1989 Algorithms 2009: Graph Algorithms — 57/71

Strongly Connected Components (cont.)

Algorithm Strongly _Connected _Components (G, n);
begin
for every vertex v of G do
v.DFS Number = 0;
v.component .= 0,
Current_Component .= 0; DFS_N =n,
while v.DFS_ Number = 0 for some v do
SCC(v)
end

procedure SCC (v);
begin
v.DFS_Number ;= DFS_N,
DFS N . =DFS N —1,
Insert v INto Stack;
@ v.high .= v.DFS_ Number,
IM Nt/ NTU

Algorithms 2009: Graph Algorithms — 58/71

Strongly Connected Components (cont.)

for all edges (v, w) do
If w.DFS_Number =0 then
SCC(w);
v.high = max(v.high, w.high)
else If w.DFS_Number > v.DFS_Number
and w.component = 0 then
v.high = max(v.high,w.DFS_Number)
If v.high =v.DFS_Number then
Current_Component .= Current_Component + 1,
repeat
remove x from the top of Stack;
x.component .= Current_Component
until z =wv
end

1= Nay
S~
N\
\
1 |
il

IM # NTU Algorithms 2009: Graph Algorithms — 59/71

Strongly Connected Components (cont.)

W b @ d e [g k& i i kl
nm w9 7 & % 4 3 2 1
a 1] -
b1l -
e 11 W0 9 .
d Il W0 % &
e Il 10 9 & 10
d momw s o1 -
¢ U 10 10 o 10 -
f 1w o & -
g 1110 10 10 1 & 7
(R ¥ T T T T RN U1 SO [S
¢ 11 W0 1 1w 1w 77
() 0 1w w0 1w w77
a 1 1w I o w771 -
B 10 10 W W 7T 7T 4 -
. (o w77 4 3
j I om w T 7T 4 Tom
I 11 (11 1] 1 Iy 7 7 &4 1 I -
&Y m 10 0 i@ e 7T 7 4 11 1t 1
i Mmoo W oW w7 7 o4 11l
BoOIl W0 1 w77 o111 11
@ Mmoo w77 o ouon

Figure 7.34 An example of computing High values and strongly connected components.

IM’ NTU Source: Manber 1989 Algorithms 2009: Graph Algorithms — 60/71

Odd-Length Cycles

The Problem Given a directed graph G = (V, E),
determine whether it contains a (directed) cycle of
odd length.

i
A '\"‘f;,'-
- NN
A
1 |
=

IM a, NTU Algorithms 2009: Graph Algorithms — 61/71

Network Flows

Consider a directed graph, or network, G = (V, E) with
two distinguished vertices: s (the) with indegree
0 and ¢ (the) with outdegree 0.

Each edge ¢ In £ has an associated positive weight c(e),
called the of e.

Ak /)
IM mﬁ NTU Algorithms 2009: Graph Algorithms — 62/71

Network Flows (cont.)

A IS a function f on E that satisfies the following
two conditions:

1. 0 < f(e) < cle).
2. > flu,v) =) f(v,w), forallveV —{s,t}.

The IS to maximize the flow f for
a given network G.

P py,
"Ny N
)\l\ 04,‘," N
- NN
A
1 |
|

IM S5 NTU Algorithms 2009: Graph Algorithms — 63/71

Network Flows (cont.)

LN
- LY
om LY
- Ld
b B
LY
rd
#
. L X
s - -
=
- i -
r d_,." . w
-
___.-" ~ . i
- - w
i - =
i £ T,
- - - %
- Es
e . i - — = i -
r - T e b b
oy = - -,
o - - -
e s B
R = ’
L~ =, o T
N - -y o
- — -
e - = -
- - £ Fd
- e - r
™ - #
£) = -
LS x _.-"'
e
= - -
- -
'\‘ e - #
-
My -
% -
b " -
. -
" -
@ ’
\ #
-
-
% e
-
-
s
&
-
I

Figure 7.39 Reducing bipartite matching to network flow (the directions of all the
edges are from left to right).

Source: Manber 1989

Algorithms 2009: Graph Algorithms — 64/71

Augmenting Paths

An w.r.t. a given flow f (of a network
() Is a directed path from s to ¢ consisting of edges from
G, but not necessarily in the same diretion; each of
these edges (v, u) satisfies exactly one of:

1. (v,u) IS In the same direction as itis in G, and
f(v,u) < c(v,u). (forward edge)

2. (v,u) IS In the opposite direction in G (namely,
(u,v) € F), and f(u,v) > 0. (backward edge)

If there exists an augmenting path w.r.t. a flow f (f

admits an augmenting path), then f is not maximum.

IM\E%NTU

o MY

Algorithms 2009: Graph Algorithms — 65/71

Augmenting Paths (cont.)

4/3

Figure 7.40 An example of a network with a (nonmaximum) flow.

Source: Manber 1989

Algorithms 2009: Graph Algorithms — 66/71

Augmenting Paths (cont.)

413

5/5 W

Figure 7.41 The result of augmenting the flow of Fig. 7.40.

Source: Manber 1989

Algorithms 2009: Graph Algorithms — 67/71

Properties of Network Flows

The Augmenting-Path Theorem A flow f Is maxi-
mum If and only if it admits no augmenting path.

A IS a set of edges that separate s from ¢, or more
precisely a set of the form {(v,w) € F|v € Aand w € B},
where B=V — Asuchthat s Aandt € B.

Max-Flow Min-Cut Theorem The value of a maxi-
mum flow Iin a network is equal to the minimum ca-
pacity of a cut.

ks
IM mﬁ NTU Algorithms 2009: Graph Algorithms — 68/71

Properties of Network Flows (cont.)

The Integral-Flow Theorem If the capacities of all
edges In the network are integers, then there is a
maximum flow whose value is an integer.

"
1= Nay
- %N
5

Ay

=1

3 |

II\/I“’ NTU Algorithms 2009: Graph Algorithms — 69/71

Residual Graphs

The with respect to a network

G = (V,F) and a flow f Is the network R = (V, F'), where

F consists of all forward and backward edges and their

capacities are given as follows:

1. cg(v,w) = c(v,w) — f(v,w) If (v,w) IS a forward edge
and

2. cr(v,w) = f(w,v) If (v,w) Is a backward edge.

An augmenting path is thus a regular directed path from
s to ¢ In the residual graph.

Algorithms 2009: Graph Algorithms — 70/71

Residual Graphs (cont.)

Figure 7.42 A bad example of network flow.

Source: Manber 1989

Algorithms 2009: Graph Algorithms — 71/71

	The K"onigsberg Bridges Problem
	large The K"onigsberg Bridges Problem (cont.)
	Graphs
	Modeling with Graphs
	Graphs (cont.)
	Eulerian Graphs
	Depth First Search
	Depth First Search (cont.)
	Depth First Search (cont.)
	Connected Components
	DFS Numbers
	The DFS Tree
	The DFS Tree (cont.)
	The DFS Tree (cont.)
	Directed Cycles
	Directed Cycles (cont.)
	Directed Cycles (cont.)
	Breadth-First Search
	Breadth-First Search (cont.)
	Breadth-First Search (cont.)
	Breadth-First Search (cont.)
	Breadth-First Search (cont.)
	Topological Sorting
	Topological Sorting (cont.)
	Single-Source Shortest Paths
	Shorted Paths: The Acyclic Case
	The Acyclic Case (cont.)
	Shortest Paths: The General Case
	The General Case (cont.)
	Minimum-Weight Spanning Trees
	Minimum-Weight Spanning Trees (cont.)
	large Minimum-Weight Spanning Trees (cont.)
	large Minimum-Weight Spanning Trees (cont.)
	large Minimum-Weight Spanning Trees (cont.)
	large Minimum-Weight Spanning Trees (cont.)
	large Minimum-Weight Spanning Trees (cont.)
	large Minimum-Weight Spanning Trees (cont.)
	All Shortest Paths
	Transitive Closure
	Transitive Closure (cont.)
	Biconnected Components
	Biconnected Components (cont.)
	Biconnected Components (cont.)
	Biconnected Components (cont.)
	Biconnected Components (cont.)
	Biconnected Components (cont.)
	Biconnected Components (cont.)
	Biconnected Components (cont.)
	Biconnected Components (cont.)
	Even-Length Cycles
	Even-Length Cycles (cont.)
	Strongly Connected Components
	large Strongly Connected Components (cont.)
	large Strongly Connected Components (cont.)
	large Strongly Connected Components (cont.)
	large Strongly Connected Components (cont.)
	large Strongly Connected Components (cont.)
	large Strongly Connected Components (cont.)
	large Strongly Connected Components (cont.)
	Odd-Length Cycles
	Network Flows
	Network Flows (cont.)
	Network Flows (cont.)
	Augmenting Paths
	Augmenting Paths (cont.)
	Augmenting Paths (cont.)
	Properties of Network Flows
	large Properties of Network Flows (cont.)
	Residual Graphs
	Residual Graphs (cont.)

