
Algorithms [Compiled on May 17, 2009] Spring 2009

Suggested Solutions to Midterm Problems

Problems

1. Prove by induction that the sum of the heights of all nodes in a full binary tree of height
h is 2h+1 − h − 2 and that the sum equals n − (h + 1), where n is the total number of
nodes in the tree. (Note: a single-node tree has height 0.)

Solution. (Chih-Pin Tai)

It is sufficient to prove that the sum of the heights of all nodes in a full binary tree of
height h is 2h+1−h−2. For a full binary tree of height h, it is well known that n = 2h+1−1
and it follows that the sum equals 2h+1 − 1 − (h + 1) = n − (h + 1). The proof is by
induction on the height h.

Base case: When h = 0, the tree has only one node which is of height 0 and so the sum
of the heights of all nodes is 0 which equals 20+1 − 0− 2.

Inductive step: When h = k + 1, we proceed as follows. A full binary tree of height k + 1
is composed of one root node whose height is k + 1 and two full binary trees of height k.
The induction hypothesis states that when h = k, the sum of the heights of all nodes in a
full binary tree of height k equals 2k+1 − k − 2. Therefore, the sum for a full binary tree
of height k + 1 equals (k + 1) + 2× (2k+1− k− 2), which equals 2(k+1)+1− (k + 1)− 2. 2

2. The Partition procedure for the Quicksort algorithm discussed in class is as follows, where
Middle is a global variable.

Partition (X, Left , Right);
begin

pivot := X[Left];
L := Left ; R := Right ;
while L < R do

while X[L] ≤ pivot and L ≤ Right do L := L + 1;
while X[R] > pivot and R ≥ Left do R := R− 1;
if L < R then swap(X[L], X[R]);

Middle := R;
swap(X[Left], X[Middle])

end

Find an adequate loop invariant for the main while loop, which is sufficient to show that
after the execution of the last two assignment statements the array is properly parti-
tioned by X[Middle]. Please express the loop invariant as precisely as possible, using
mathematical notation.

1

Solution. The algorithm assumes that Left < Right . This condition holds throughout the
algorithm and we will keep it implicit. A suitable loop invariant for the main while loop
is as follows:

pivot = X[Left]
∧ ∀i(Left ≤ i < L→ X[i] ≤ pivot)
∧ ∀j(R < j ≤ Right → pivot < X[j])
∧ Left ≤ L ≤ Right
∧ Left ≤ R ≤ Right
∧ (L 6< R)→ (L− 1 = R)

This loop invariant is maintained before and after every iteration of the loop. Note that
the inequalities i < L and R < j in the second and third conjuncts are strict. This is so
because when the condition L < R does not hold, the statement swap(X[L], X[R]) will
not be performed. After the while loop terminates with L 6< R and the following two
statements are executed, we can conclude:

pivot = X[Middle]
∧ ∀i(Left ≤ i ≤Middle→ X[i] ≤ pivot)
∧ ∀j(Middle < j ≤ Right → pivot < X[j])

which is the (post-)condition desired of the Partition algorithm, indicating that the algo-
rithm is indeed correct. 2

3. Find the asymptotic behavior of the function T (n) defined as follows:{
T (1) = 1
T (n) = T (n/2) +

√
n, n = 2i (i ≥ 1)

You should try to solve this problem without resorting to the general theorem for divide-
and-conquer relations (see the Appendix) discussed in class. The asymptotic bound should
be as tight as possible. (Hint: an effective way is to guess and verify by induction. You
may need to try a few choices.)

Solution. (Yu-Fang Chen)

T (n) = O(
√

n).

We prove by induction on n that T (n) ≤ 7
√

n.
Base case: T (1) = 1 ≤ 7 = 7

√
1.

Inductive step: T (2n) = T (n) +
√

2n ≤ 7
√

n +
√

2
√

n = (7 +
√

2)
√

n ≤ 7
√

2
√

n = 7
√

2n.

Note: How was the constant 7 determined? Suppose T (n) ≤ c
√

n for some c. Anticipating
the proof obligation in the inductive step that T (2n) = T (n)+

√
2n ≤ c

√
n+
√

2
√

n, which
should be ≤ c

√
2n = c

√
2
√

n, we stipulate that the constant c should be ≥
√

2/(
√

2 −
1) = 6. · · ·; 7 is just one of such constants. But, how do we know in the first place
that T (n) = O(

√
n) is a good guess? The guess is motivated by considering two other

recurrence relations: “T (n) = T (n/2) + 1, T (1) = 1” (in which case T (n) = O(log n)) and
“T (n) = T (n/2) + n, T (1) = 1” (in which case T (n) = O(n)). 2

2

4. Consider a max heap represented as the following array which may store a maximum of
15 elements.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
15 12 13 11 10 9 7 6 8 1 2 4 3 5

(a) Show the resulting heap after Insert(14).

Solution. (Yi-Wen Chang)

Appending 14 at the end:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
15 12 13 11 10 9 7 6 8 1 2 4 3 5 14

After Rearrange Heap :

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
15 12 14 11 10 9 13 6 8 1 2 4 3 5 7

2

(b) Show the resulting heap after a Remove() operation (on the original heap).

Solution. (Yi-Wen Chang)

Swapping the head and the end elements:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
5 12 13 11 10 9 7 6 8 1 2 4 3 15

After Rearrange Heap:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
13 12 9 11 10 5 7 6 8 1 2 4 3

2

5. Show all intermediate and the final AVL trees formed by inserting the numbers 3, 2, 1, 6,
5, and 4 (in this order) into an empty tree. Please use the following ordering convention:
the key of an internal node is larger than that of its left child and smaller than that of
its right child. If re-balancing operations are performed, please also show the tree before
re-balancing and indicate what type of rotation is used in the re-balancing.

Solution. (Chih-Pin Tai)
/.-,()*+3

insert(2)
//

/.-,()*+3

/.-,()*+2
zztttttttt

insert(1)
//

/.-,()*+3

/.-,()*+2
zztttttttt

/.-,()*+1
��������

single rotation
//

/.-,()*+2

/.-,()*+1
zztttttttt

/.-,()*+3
$$JJJJJJJJ

3

insert(6)
//

/.-,()*+2

/.-,()*+1
zztttttttt

/.-,()*+3
$$JJJJJJJJ

/.-,()*+6
��??????
insert(5)

//

/.-,()*+2

/.-,()*+1
zztttttttt

/.-,()*+3
$$JJJJJJJJ

/.-,()*+6
��??????

/.-,()*+5
������

double rotation//

/.-,()*+2

/.-,()*+1
zztttttttt

/.-,()*+3
$$JJJJJJJJ

/.-,()*+5
��??????

/.-,()*+6
��////

/.-,()*+2

/.-,()*+1
zztttttttt

/.-,()*+5
$$JJJJJJJJ

/.-,()*+6
��??????

/.-,()*+3
��������

insert(4)
//

/.-,()*+2

/.-,()*+1
zztttttttt

/.-,()*+5
$$JJJJJJJJ

/.-,()*+6
��??????

/.-,()*+3
��������

/.-,()*+4
��////

double rotation//

/.-,()*+2

/.-,()*+1
zztttttttt

/.-,()*+3
$$JJJJJJJJ

/.-,()*+5
��??????

/.-,()*+4
������

/.-,()*+6
��////

/.-,()*+3

/.-,()*+2
zztttttttt

/.-,()*+5
$$JJJJJJJJ

/.-,()*+6
��??????

/.-,()*+4
��������

/.-,()*+1
��������

2

6. Let x1, x2, · · · , xn be a sequence of real numbers (not necessarily positive). Design an O(n)
algorithm to find the subsequence xi, xi+1, · · · , xj (of consecutive elements) such that the
product of the numbers in it is maximum over all consecutive subsequences. The product
of the empty subsequence is defined to be 1.

Please present your algorithm in an adequate pseudo code and make assumptions wherever
necessary. Explain the intuition behind your algorithm so that its correctness becomes
clear.

Solution. (Wen-Chin Chan, and modified by Jinn-Shu Chang)

4

Algorithm Maximum Consecutive Subsequence(X,n)
begin

Global Max := 1;
Suffix Max := 1;
Suffix Min := 1;
for i := 1 to n do

if X[i] > 0 then
if Suffix Max ×X[i] > Global Max then

Global Max := Suffix Max ×X[i];
Suffix Max := Suffix Max ×X[i];
Suffix Min := Suffix Min ×X[i];
if Suffix Max < 1 then

Suffix Max := 1;
if Suffix Min ≥ 0 then

Suffix Min := 1;
else if X[i] < 0 then

if Suffix Min ×X[i] > Global Max then
Global Max := Suffix Min ×X[i];

Suffix Max := Suffix Max ×X[i];
Suffix Min := Suffix Min ×X[i];
swap(Suffix Max , Suffix Min);
if Suffix Max < 1 then

Suffix Max := 1;
else /* X[i] = 0 */

Suffix Max := 1;
Suffix Min := 1;

end

2

7. The Knapsack Problem is defined as follows: Given a set S of n items, where the i-th
item has an integer size S[i], and an integer K, find a subset of the items whose sizes sum
to exactly K or determine that no such subset exists.

Now consider a variant where we want the subset to be as large as possible (i.e., to be
with as many items as possible). How will you adapt the algorithm (see the Appendix)
that we have studied in class? Your algorithm should collect at the end the items in one
of the best solutions if they exist. Please present your algorithm in an adequate pseudo
code and make assumptions wherever necessary (you may reuse the code for the original
Knapsack Problem). Give an analysis of its time complexity. The more efficient your
algorithm is, the more points you will get for this problem.

Solution. (Yi-Wen Chang)

5

To find the largest possible subset of items, we modify the Knapsack algorithm in the
Appendix to obtain Knapsack ForMaxSubset , as shown below. Each element P [i, k] in
the result array P now contains a new integer variable size which memorizes the size of
the current largest subset for k.

Algorithm Knapsack ForMaxSubset(S, K);
begin

P [0, 0].exist := true;
P [0, 0].size := 0;
for k := 1 to K do

P [0, k].exist := false;
P [0, k].size := 0;

for i := 1 to n do

for k := 0 to K do

P [i, k].exist := false;
P [i, k].size := 0;
if k − S[i] ≥ 0 and P [i− 1, k − S[i]].exist then

if P [i− 1, k].exist and P [i− 1, k].size ≥ P [i− 1, k − S[i]].size + 1 then

P [i, k].exist := true;
P [i, k].belong := false;
P [i, k].size := P [i− 1, k].size;

else

P [i, k].exist := true;
P [i, k].belong := true
P [i, k].size := P [i− 1, k − S[i]].size + 1;

else if P [i− 1, k].exist then

P [i, k].exist := true;
P [i, k].belong := false;
P [i, k].size := P [i− 1, k].size;

if ¬P [n, K].exist then

print “no solution”
else i := n;

k := K;
while k > 0 do

if P [i, k].belong then

print i;
k := k − S[i];

i := i− 1;
end

The complexity remains the same, which is O(nK). When a solution (a subset of items

6

whose sizes sum to exactly K) exists, the printed result will be the largest among such
subsets.

2

8. Consider an alternative algorithm for partition in the Quicksort algorithm:

Partition (X, Left , Right);
begin

pivot := X[Left];
i := Left ;
for j := Left + 1 to Right do

if X[j] < pivot then i := i + 1;
swap(X[i], X[j]);

Middle := i;
swap(X[Left], X[Middle])

end

How does this algorithm compare to the algorithm we discussed in class? Please point
out the advantages and the disadvantages of this alternative with adequate justification.

Solution. Let us first try to understand this Partition algorithm. The basic idea is to
maintain three contiguous regions in the array, using the two indices i and j. From left
to right, the first region contains elements that are known to be less than or equal to the
pivot. The second region contains elements that are known to be greater than the pivot.
The third region contains elements that are yet to be processed, i.e., to be put into the
first or the second region. Index i marks the right end of the first region, j marks the left
end of the third region, and in between is the second region. In each iteration of the for
loop, depending on the value of the first element (pointed to by j, when the execution
reaches the if statement) of the third region, one of the following two changes takes place:

• When X[j] < pivot , the first region is expanded by one element to the right by
swapping X[i + 1] and X[j], causing the second region to be shifted also by one
element to the right.

• When X[j] ≥ pivot , the second region is expanded by one element to the right (via
simply incrementing j).

We now compare this algorithm with the Partition algorithm discussed in class, which we
refer to as the “Sides-to-Middle” algorithm.

• Advantages: In this algorithm, pivot is compared against n−1 array elements, while
in “Sides-to-Middle” n + 1 such comparisons are made. This algorithm is simpler in
structure and perhaps less prone to mistake for implementation, but this is rather
subjective.

7

• Disadvantages: A swap is needed in this algorithm whenever X[j] < pivot . So, the
total number of swaps equals the number of elements that are smaller than pivot . In
contrast, “Sides-to-Middle” usually needs less swaps. For example, 5, 6, 1, 2, 3, 4 will
need 4 swaps in this algorithm, but only 1 swap in “Sides-to-Middle”. Also, in an
extreme case, where i + 1 equals j (i.e., when the second region is still empty), the
swapping of elements is not necessary, but is performed in this algorithm.

2

9. Apply the Quicksort algorithm to the following array. Show the contents of the array
after each partition operation. If you use a different partition algorithm (from the one
discussed in class), please describe it.

1 2 3 4 5 6 7 8 9 10 11 12
4 7 10 9 11 6 8 1 5 12 3 2

Solution.

1 2 3 4 5 6 7 8 9 10 11 12
4 7 10 9 11 6 8 1 5 12 3 2
1 2 3 4 11 6 8 9 5 12 10 7
1 2 3 4 11 6 8 9 5 12 10 7
1 2 3 4 11 6 8 9 5 12 10 7
1 2 3 4 10 6 8 9 5 7 11 12
1 2 3 4 7 6 8 9 5 10 11 12
1 2 3 4 5 6 7 9 8 10 11 12
1 2 3 4 5 6 7 9 8 10 11 12
1 2 3 4 5 6 7 8 9 10 11 12

2

10. Your task is to design an in-place algorithm that sorts an array of numbers according to
a prescribed order. The input is a sequence of n numbers x1, x2, · · ·, xn and another
sequence a1, a2, · · ·, an of n distinct numbers between 1 and n (i.e., a1, a2, · · ·, an is a
permutation of 1, 2, · · ·, n), both represented as arrays. Your algorithm should sort the
first sequence according to the order imposed by the permutation as prescribed by the
second sequence. For each i, xi should appear in position ai in the output array. As an
example, if x = 23, 9, 5, 17 and a = 4, 1, 3, 2, then the output should be x = 9, 17, 5, 23.

Please describe your algorithm as clearly as possible; it is not necessary to give the pseudo
code. Remember that the algorithm must be in-place, without using any additional storage
for the numbers to be sorted. Give an analysis of its time complexity. The more efficient
your algorithm is, the more points you will get for this problem.

Solution. Suppose that array X holds the first sequence and array A the second. Sort A

increasingly according to the position values that it stores. Every time when two elements
in A, say ai and aj , are swapped, we also swap the corresponding elements in X, i.e., xi

and xj . Once the sorting of A is completed, the elements in X are also sorted as prescribed

8

by A. Any in-place sorting algorithm may be used for sorting A. If we use Heapsort, the
complexity is O(n log n).

In fact, there is a much simpler and faster (linear-time) algorithm. In this algorithm, we
scan array A form left to right. Whenever A[i] 6= i, we swap xi and xA[i] and also A[i]
and A[A[i]]. This is repeated until A[i] = i and we then proceed to the next element in
array A. Each swap of xi and xA[i] brings one element in X to its final destination. So,
we ever need to do such swaps at most n times. The corresponding swaps for A are also
performed at most n times. Therefore, this algorithm runs in O(n) time. 2

Appendix

• The solution of the recurrence relation T (n) = aT (n/b) + cnk, where a and b are integer
constants, a ≥ 1, b ≥ 2, and c and k are positive constants, is as follows.

T (n) =


O(nlogb a) if a > bk

O(nk log n) if a = bk

O(nk) if a < bk

• Below is an algorithm for determining whether a solution to the Knapsack Problem exists.

Algorithm Knapsack (S, K);
begin

P [0, 0].exist := true;
for k := 1 to K do

P [0, k].exist := false;
for i := 1 to n do

for k := 0 to K do

P [i, k].exist := false;
if P [i− 1, k].exist then

P [i, k].exist := true;
P [i, k].belong := false

else if k − S[i] ≥ 0 then

if P [i− 1, k − S[i]].exist then

P [i, k].exist := true;
P [i, k].belong := true

end

9

