
Algorithms [Compiled on April 16, 2010] Spring 2010

Suggested Solutions to HW #3

1. (3.4) Below is a theorem from Manber’s book:

For all constants c > 0 and a > 1, and for all monotonically increasing functions

f(n), we have (f(n))c = O(af(n)).

Prove, by using the above theorem, that for all constants a, b > 0, (log2 n)
a = O(nb).

Solution.(Jen-Feng Shih)

To avoid confusion in the variable names, we rename the variables and prove that for all

constants d, e > 0, (log2 n)
d = O(ne).

Applying the theorem with c = d > 0, a = 2e > 1, and f(n) = log2 n, we have

(log2 n)
d

= O(af(n))

= O((2e)log2 n)

= O(2e×log2 n)

= O(2log2 n
e
)

= O(ne)

2

4. (3.18) Consider the recurrence relation

T (n) = 2T (n/2) + 1, T (2) = 1.

We try to prove that T (n) = O(n) (we limit our attention to powers of 2). We guess that

T (n) ≤ cn for some (as yet unknown) c, and substitute cn in the expression. We have to

show that cn ≥ 2c(n/2) + 1. But this is clearly not true. Find the correct solution of this

recurrence (you can assume that n is a power of 2), and explain why this attempt failed.

Solution.(Jinn-Shu Chang)

The attempt in this question failed because, in the case of a linear bound, a (negative) con-

stant has to be included in the upper bound to cancel out the constant (1 in this case) in the

recurrence relation.

Let us try a better guess: T (n) ≤ c(n − 1). Substituting the upper bound c((n/2) − 1) for

T (n/2) in the induction step, we get

T (n) = 2T (n/2) + 1

1



= 2(c(n/2)− 1) + 1

= cn− 2 + 1

= cn− 1.

c = 1 will make cn−1 less than or equal to c(n−1). Hence we have proven that T (n) ≤ n−1.

Since n− 1 ≤ n, we have also proven that T (n) ≤ n, implying T (n) = O(n).

2

2


