
Algorithms [Compiled on May 19, 2011] Spring 2011

Suggested Solutions to HW #6

1. Perform insertions of the numbers 6, 5, 2, 0, 3, 4, 1 (in this order) into an empty AVL

tree. Show each AVL tree after a number has been inserted. If re-balancing operations

are performed, please also show the tree before re-balancing and indicate what type of

rotation is used in the re-balancing.

Solution.

insert 6
6

insert 5
6

5

insert 2
6

5

2

single rotate
at 6

5

2 6

insert 0
5

2

0

6

insert 3
5

2

0 3

6

insert 4
5

2

0 3

4

6

double rotate
at 5

3

2

0

5

4 6

insert 1
3

2

0

1

5

4 6

double rotate
at 2

3

1

0 2

5

4 6

2

2. The Partition procedure for the Quicksort algorithm discussed in class is as follows,

where Middle is a global variable.

Partition (X,Left ,Right);

1



begin

pivot := X[Left ];

L := Left ; R := Right ;

while L < R do

while X[L] ≤ pivot and L ≤ Right do L := L + 1;

while X[R] > pivot and R ≥ Left do R := R− 1;

if L < R then swap(X[L], X[R]);

Middle := R;

swap(X[Left ], X[Middle])

end

(a) Apply the Partition procedure to the following array (assuming that the first element

is chosen as the pivot).

9 14 6 10 13 12 2 11 1 7 15 3 5 8 16 4

Show the result after each exchange (swap) operation.

Solution.

9 14 6 10 13 12 2 11 1 7 15 3 5 8 16 4

9 (4) 6 10 13 12 2 11 1 7 15 3 5 8 16 (14)

9 4 6 (8) 13 12 2 11 1 7 15 3 5 (10) 16 14

9 4 6 8 (5) 12 2 11 1 7 15 3 (13) 10 16 14

9 4 6 8 5 (3) 2 11 1 7 15 (12) 13 10 16 14

9 4 6 8 5 3 2 (7) 1 (11) 15 12 13 10 16 14

(1) 4 6 8 5 3 2 7 (9) 11 15 12 13 10 16 14
2

(b) Apply the Quicksort algorithm to the above array. Show the result after each

partition operation.

Solution.

9 14 6 10 13 12 2 11 1 7 15 3 5 8 16 4

1 4 6 8 5 3 2 7 (9) 11 15 12 13 10 16 14

(1) 4 6 8 5 3 2 7 (9) 11 15 12 13 10 16 14

(1) 3 2 (4) 5 8 6 7 (9) 11 15 12 13 10 16 14

(1) 2 (3) (4) 5 8 6 7 (9) 11 15 12 13 10 16 14

(1) 2 (3) (4) (5) 8 6 7 (9) 11 15 12 13 10 16 14

(1) 2 (3) (4) (5) 7 6 (8) (9) 11 15 12 13 10 16 14

(1) 2 (3) (4) (5) 6 (7) (8) (9) 11 15 12 13 10 16 14

(1) 2 (3) (4) (5) 6 (7) (8) (9) 10 (11) 12 13 15 16 14

(1) 2 (3) (4) (5) 6 (7) (8) (9) 10 (11) (12) 13 15 16 14

(1) 2 (3) (4) (5) 6 (7) (8) (9) 10 (11) (12) (13) 15 16 14

(1) 2 (3) (4) (5) 6 (7) (8) (9) 10 (11) (12) (13) 14 (15) 16
2

3. (6.10) Find an adequate loop invariant for the main while loop in the Partition procedure

of the Quicksort algorithm, which is sufficient to show that after the execution of the

2



last two assignment statements the array is properly partitioned by X[Middle]. Please

express the loop invariant as precisely as possible, using mathematical notation.

Solution. The algorithm assumes that Left < Right . This condition holds throughout the

algorithm and we will keep it implicit. A suitable loop invariant for the main while loop

is as follows:
pivot = X[Left ]

∧ ∀i(Left ≤ i < L =⇒ X[i] ≤ pivot)
∧ ∀j(R < j ≤ Right =⇒ pivot < X[j])
∧ Left ≤ L ≤ Right + 1
∧ Left ≤ R ≤ Right
∧ (L 6< R) =⇒ (L− 1 = R)

This loop invariant is maintained before and after every iteration of the loop. Note that

the inequalities i < L and R < j in the second and third conjuncts are strict. This is so

because when the condition L < R does not hold, the statement swap(X[L], X[R]) will

not be performed. After the while loop terminates with L 6< R and the following two

statements are executed, we can conclude:

pivot = X[Middle]
∧ ∀i(Left ≤ i ≤Middle =⇒ X[i] ≤ pivot)
∧ ∀j(Middle < j ≤ Right =⇒ pivot < X[j])

which is the (post-)condition desired of the Partition algorithm, indicating that the algo-

rithm is indeed correct. 2

3


