Algorithms [Compiled on March 3, 2012] Spring 2012

Note on Chapter 3 of [Manber|:
Solving a Recurrence Relation with Generating Functions

Generating Functions provide a systematic, effective means for representing and manipulating
infinite sequences (of numbers). We use them here to derive a closed-form representation of the

Fibonacci sequence as defined by the following recurrence relation:
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Below are two basic generating functions; the second one is a generalization of the first and will

be used in our solution.
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Let F(2) =04 Fiz + Fp2® + F323 + -+ - 4+ F,,2" + - - - (a generating function for the Fibonacci
sequence).
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Continuing from (1 — z — 2?)F(2) = 2,

1

1
_ V5 V5
1_1+2\/EZ 1_1=Vv5

= (%—I—%Hz‘/gz%—%( 5 )2z2+---+%( ) )+

(_% + (_%)1_2\/52 —+ (—%)(1—2\/5)222 + + (_%)(1—2\/5) P 4. )
= 24224+ (%(1+2\/5)n _ %(172\/5)71)271 i
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