Algorithms 2012: Analysis of Algorithms

(Based on [Manber 1989])

Yih-Kuen Tsay

1 Introduction
Introduction

e The purpose of algorithm analysis is to predict the behavior (running time, space requirement, etc.)
of an algorithm without implementing it on a specific computer. (Why?)

e As the exact behavior of an algorithm is hard to predict, the analysis is usually an approzimation:

- (usually denoted by n): input possibilities too enormous to elaborate
— : should care more about larger inputs

- : easier to do, often representative (Why not average-case?)

e Such an approximation is usually good enough for comparing different algorithms for the same problem.

Complexity

e Theoretically, “complexity of an algorithm” is a more precise term for “approximate behavior of an
algorithm?”.

e Two most important measures of complexity:

— Time Complexity an upper bound on the number of steps that the algorithm performs.

— Space Complexity an upper bound on the amount of temporary storage required for running the
algorithm (excluding the input, the output, and the program itself).

e We will focus on time complexity.

Comparing Running Times
e How do we compare the following running times?

1. 100n
2. 2n% +50
3. 100n!8

e We will study an approach (the O notation) that allows us to ignore constant factors and concentrate
on the behavior as n goes to infinity.

e For most algorithms, the constants in the expressions of their running times tend to be small.

2 The O Notation
The O Notation

e A function g(n) is O(f(n)) for another function f(n) if there exist constants ¢ and N such that, for all
n=N,g(n) < cf(n).

e The function g(n) may be substantially less than cf(n); the O notation bounds it only from above.
e The O notation allows us to ignore constants conveniently.
e Examples:

— 5n? +15 = 0(n?). (cf. 5n? 4+ 15 < O(n?) or 5n 4+ 15 € O(n?))
— 5?2 +15=0(n3). (cf. 5n? +15 < O(n?) or 5n? + 15 € O(n?))
— In an expression, T'(n) = 3n% + O(n).

The O Notation (cont.)

e No need to specify the base of a logarithm.

loggn _
log1p2 log 2

— logyn = logg 1.
— For example, we can just write O(logn).

e O(1) denotes a constant.

Properties of O
e We can add and multiply with O.

Lemma 1 (3.2). 1. If f(n) = O(s(n)) and g(n) = O(r(n)), then f(n) + g(n) = O(s(n) + r(n)). 2. If
f(n) = O(s(n)) and g(n) = O(r(n)), then f(n)-g(n) = O(s(n) - r(n)).

e However, we cannot subtract or divide with O.

—2n=0(n), n=0(n), and 2n —n =n# O(n —n).
— n?2=0(n?), n=0(n?), and n?/n =n # O(n?/n?).

3 Speed of Growth

Polynomial vs. Exponential
e A function f(n) is monotonically growing if ny > ny implies that f(nq) > f(n2).
e An exponential function grows at least as fast as a polynomial function does.

Theorem 2 (3.1). For all constants ¢ > 0 and a > 1, and for all monotonically growing functions
f(n), (f(n)®=0(a/™).
e Examples:

— Take n as f(n), n® = O(a™).
— Take log, n as f(n), (log, n)¢ = O(a'*8") = O(n).

Speed of Growth

[logn | n|nlogn| n®| n’ | 2" ||
0 1 0 1 1 2
1 2 2 4 8 A
2] 4 8 16 64 16
3| 8 24 64 012 256
4116 64 256 | 4,096 65,536
5 (32 160 | 1,024 | 32,768 | 4,294,967,296

Table 1.7 Function values

Source: [E. Horowitz et al. 1998].

Speed of Growth (cont.)

time | timex time 3 time 4
running times 1000 steps/sec 2000 steps/sec 4000 steps/sec 8000 steps/sec
log,n 0.010 0.005 0.003 0.001
n 1 0.5 0.25 0.125
nlog,n 10 S 25 1.25
e 32 16 8 4
n? 1,000 500 250 125
n’ 1,000,000 500.000 250,000 125,000
n 39 39 38 38
L1 10 10 10 10

Table 3.1 Running times (int seconds) under different assumptions (n = 1000)
Source: [Manber 1989].

0, o,), and ©
e Let T'(n) be the number of steps required to solve a given problem for input size n.

e We say that T'(n) = Q(g(n)) or the problem has a lower bound of (g(n)) if there exist constants ¢
and N such that, for all n > N, T'(n) > cg(n).

e If a certain function f(n) satisfies both f(n) = O(g(n)) and f(n) = Q(g(n)), then we say that f(n) =
©(g(n)).

e We say that f(n) =o(g(n)) if nlingo % =0.

Polynomial vs. Exponential (cont.)

e An exponential function grows faster than a polynomial function does.

Theorem 3 (3.3). For all constants ¢ > 0 and a > 1, and for all monotonically growing functions

f(n), we have
(f(n)¢ = o(a’™).

e Consider a previous example again: Take log, n as f(n). For all ¢ > 0 and a > 1,

(log,n)¢ = o(a*%") = o(n).

4 Sums

Sums
e Techniques for summing expressions are essential for complexity analysis.

e For example, given that we know
n

So(n):ZIZn

and

n
) +1
51(71):z:z:1—|—2—&-3_|_..._|_n:%7
i=1

we want to compute the sum
n
Sp(n) = i?=1242" 432+ +n’.
i=1

Sums (cont.)
From
(i+1)* =i+ 3 + 3i + 1,

we have
(i4+1) =i =32 +3i + 1.

2213 = 3x1243x1+1

3-23 = 3x2243x2+1

43-3% = 3x324+3x3+1

(n+13-n* = 3xn?’+3xn+1
(n—|—1)3—1 = 3 XSQ(TL)+3>< Sl(n)—i-So(n)
(S3(n+1) = 83(1)) = S3(n) = 3 x52(n) +3x 51(n) + So(n)

Sums (cont.)

e So, we have
(TL—|— 1)3 —1=3x SQ(H) + 3 x Sl(n) + So(n)

Given Sp(n) and S1(n), the sum S2(n) can be computed by straightforward algebra.

Recall that the left-hand side (n + 1)® — 1 equals (S3(n + 1) — S3(1)) — S3(n), a result from “shifting
and canceling” terms of two sums.

This generalizes to Si(n), for k > 2.

e Similar shifting and canceling techniques apply to other kinds of sums.

5 Recurrence Relations
Recurrence Relations

e A recurrence relation is a way to define a function by an expression involving the same function.

e The Fibonacci numbers can be defined as follows:

(1)
F(2)
We would need k — 2 steps to compute F(k).

e It is more convenient to have an explicit (or closed-form) expression.

e To obtain the explicit expression is called solving the recurrence relation.

Guessing and Proving an Upper Bound

T(2) =1

-)
e Recurrence relation: { T(2n) < 2T(n) + 2n — 1

o Guess: T'(n) = O(nlogn).
e Proof:

1. Base case: T'(2) < 2log2.

<2(nlogn)+2n—1
=2nlogn + 2nlog2 — 1
< 2n(logn + log 2)

= 2nlog2n

2. Inductive step: T(2n) < 2T(n)+2n—1

Recurrent Relations with Full History

e Example:
n—1

T(n)=c+ > T(i),

i=1
where ¢ is a constant and T'(1) is given separately.

o T(n) —T(n—1) = (c+ Y1 'TGE)) — (c+ 72 T(i)) = T(n —1); hence, T(n) = 2T(n — 1). (This
holds only for n > 3.)

e So, we get

which is easier to solve.

e Other examples as a reading assignment ...

6 Divide and Conquer Relations
Divide and Conquer Relations
e The running time 7T'(n) of a divide-and-conquer algorithm satisfies
T(n) = aT(n/b) + cn”
where

— a is the number of subproblems,
— n/b is the size of each subproblem, and

— ¢nk is the running time of the solutions-combining algorithm.

Divide and Conquer Relations (cont.)
Assume, for simplicity, n = 0™ (35 = 1, gm=r = b, etc.).

T(n) =aT(%)+cn”

Assuming T'(1) = ¢,

T — m—ipik m Y
(n) cZa b ca Z(.)

i=0 i=0
Three cases: % <1, % =1, and % > 1.

Divide and Conquer Relations (cont.)

Theorem 4 (3.4). The solution of the recurrence relation T'(n) = aT(n/b) + cn®, where a and b are integer
constants, a > 1, b > 2, and ¢ and k are positive constants, is

O(n'®) ifa> b
T(n) =< O(n*logn) ifa=>5"
O(n¥) if a < bk
7 Useful Facts
Useful Facts

e Harmonic series

=lnn+~v+ O(1/n),

T =

Hu=)_
k=1
where v = 0.577 ... is Euler’s constant.

e Sum of logarithms
" log,i| = (n+1)|log,n| — 2Uesanl+l 4 9
> i1 [1ogs &2
= O(nlogn).

Useful Facts (cont.)

e Bounding a summation by an integral:

If f(z) is monotonically increasing, then
n n+1
S [fws,
i=1 1

If f(z) is monotonically decreasing, then

S <)+ [e

e Stirling’s approximation

n! =V2mn (g)n (1+0(1/n)).

