
Algorithms 2012: Design by Induction

(Based on [Manber 1989])

Yih-Kuen Tsay

1 Introduction

Introduction

• It is not necessary to design the steps required to solve a problem from scratch.

• It is sufficient to guarantee the following:

1. It is possible to solve one small instance or a few small instances of the problem. (base case)

2. A solution to every problem/instance can be constructed from solutions to smaller problems/instances.
(inductive step)

2 Evaluating Polynomials

Evaluating Polynomials

Problem 1. Given a sequence of real numbers an, an−1, · · · , a1, a0, and a real number x, compute the
value of the polynomial

Pn(x) = anxn + an−1x
n−1 + · · ·+ a1x + a0.

Motivation: different approaches to the inductive step may result in algorithms of very different time
complexities.

Evaluating Polynomials (cont.)

• Let Pn−1(x) = an−1x
n−1 + · · ·+ a1x + a0.

• Induction hypothesis (first attempt)

We know how to evaluate a polynomial represented by the input an−1, · · · , a1, a0, at the point x, i.e.,
we know how to compute Pn−1(x).

• Pn(x) = anxn + Pn−1(x).

Evaluating Polynomials (cont.)

• Induction hypothesis (second attempt)

We know how to compute Pn−1(x), and we know how to compute xn−1.

• Pn(x) = anx(xn−1) + Pn−1(x).

1



Evaluating Polynomials (cont.)

• Let P ′n−1(x) = anxn−1 + an−1x
n−2 + · · ·+ a1.

• Induction hypothesis (final attempt)

We know how to evaluate a polynomial represented by the coefficients an, an−1, · · · , a1, at the point
x, i.e., we know how to compute P ′n−1(x).

• Pn(x) = P ′n(x) = P ′n−1(x) · x + a0.

Evaluating Polynomials (cont.)

• More generally,  P ′0(x) = an

P ′i (x) = P ′i−1(x) · x + an−i, for 1 ≤ i ≤ n

Evaluating Polynomials (cont.)

Algorithm Polynomial Evaluation (ā, x);
begin

P := an;
for i := 1 to n do

P := x ∗ P + an−i

end

This algorithm is known as Horner’s rule.

3 Maximal Induced Subgraph

Maximal Induced Subgraph

Problem 2. Given an undirected graph G = (V,E) and an integer k, find an induced subgraph H = (U, F )
of G of maximum size such that all vertices of H have degree ≥ k (in H), or conclude that no such induced
subgraph exists.

Design Idea: in the inductive step, we try to remove one vertex (that cannot possibly be part of the
solution) to get a smaller instance.

4 One-to-One Mapping

One-to-One Mapping

Problem 3. Given a finite set A and a mapping f from A to itself, find a subset S ⊆ A with the maximum
number of elements, such that (1) the function f maps every element of S to another element of S (i.e., f
maps S into itself), and (2) no two elements of S are mapped to the same element (i.e., f is one-to-one
when restricted to S).

Design Idea: similar to the previous problem; in the inductive step, we try to remove one element (that
cannot possibly be part of the solution) to get a smaller instance.

2



One-to-One Mapping (cont.)

Algorithm Mapping (f, n);
begin

S := A;
for j := 1 to n do c[j] := 0;
for j := 1 to n do increment c[f [j]];
for j := 1 to n do

if c[j] = 0 then put j in Queue;
while Queue not empty do

remove i from the top of Queue;
S := S − {i};
decrement c[f [i]];
if c[f [i]] = 0 then put f [i] in Queue

end

5 Celebrity

Celebrity

Problem 4. Given an n × n adjacency matrix, determine whether there exists an i (the “celebrity”) such
that all the entries in the i-th column (except for the ii-th entry) are 1, and all the entries in the i-th row
(except for the ii-th entry) are 0.

Note: A celebrity corresponds to a sink of the directed graph.

Note: Every directed graph has at most one sink.

Motivation: the trivial solution has a time complexity of O(n2). Can we do better, in O(n)?

Celebrity (cont.)

Algorithm Celebrity (Know);
begin

i := 1;
j := 2;
next := 3;
while next ≤ n + 1 do

if Know[i, j] then i := next
else j := next;

next := next + 1;
if i = n + 1 then candidate := j

else candidate := i;

Celebrity (cont.)

wrong := false;
k := 1;
Know[candidate, candidate] := false;
while not wrong and k ≤ n do

3



if Know[candidate, k] then wrong := true;
if not Know[k, candidate] then

if candidate 6= k then wrong := true;
k := k + 1;

if not wrong then celebrity := candidate
else celebrity := 0;

end

6 The Skyline Problem

The Skyline Problem

Problem 5. Given the exact locations and shapes of several rectangular buildings in a city, draw the skyline
(in two dimension) of these buildings, eliminating hidden lines.

Motivation: different approaches to the inductive step may result in algorithms of very different time
complexities.

Compare: adding buildings one by one to an existing skyline vs. merging two skylines of about the same
size

Representation of a Skyline

(1,11,5), (2,6,7), (3,13,9), (12,7,16), (14,3,25), (19,18,22), (23,13,29), and (24,4,28).

0 5 10 15 20 25 30

Representation of a Skyline (cont.)

(1,11,3,13,9,0,12,7,16,3,19,18,22,3,23,13,29).

4



0 5 10 15 20 25 30

Adding a Building

• Add (5,9,26) to (1,11,3,13,9,0,12,7,16,3,19,18,22,3,23,13,29).

0 5 10 15 20 25 30

• The skyline becomes (1,11,3,13,9,9,19,18,22,9,23,13,29).

Merging Two Skylines

Source: [Manber 1989].

5



7 Balance Factors in Binary Trees

Balance Factors in Binary Trees

Problem 6. Given a binary tree T with n nodes, compute the balance factors of all nodes.

The balance factor of a node is defined as the difference between the height of the node’s left subtree and
the height of the node’s right subtree.

Motivation: an example of why we must strengthen the hypothesis (and hence the problem to be solved).

Balance Factors in Binary Trees (cont.)

Source: [Manber 1989].

Balance Factors in Binary Trees (cont.)

• Induction hypothesis

We know how to compute balance factors of all nodes in trees that have < n nodes.

• Stronger induction hypothesis

We know how to compute balance factors and heights of all nodes in trees that have < n nodes.

8 Maximum Consecutive Subsequence

Maximum Consecutive Subsequence

Problem 7. Given a sequence x1, x2, · · · , xn of real numbers (not necessarily positive) find a subsequence
xi, xi+1, · · · , xj (of consecutive elements) such that the sum of the numbers in it is maximum over all
subsequences of consecutive elements.

Example: In the sequence (2,−3, 1.5,−1, 3,−2,−3, 3), the maximum subsequence is (1.5,−1, 3).

Motivation: another example of strengthening the hypothesis.

6



Maximum Consecutive Subsequence (cont.)

• Induction hypothesis

We know how to find the maximum subsequence in sequences of size < n.

• Stronger induction hypothesis

We know how to find, in sequences of size < n, the maximum subsequence overall and the maximum
subsequence that is a suffix.

Maximum Consecutive Subsequence (cont.)

Algorithm Max Consec Subseq (X, n);
begin

Global Max := 0;
Suffix Max := 0;
for i := 1 to n do

if x[i] + Suffix Max > Global Max then
Suffix Max := Suffix Max + x[i];
Global Max := Suffix Max

else if x[i] + Suffix Max > 0 then
Suffix Max := Suffix Max + x[i]

else Suffix Max := 0
end

9 The Knapsack Problem

The Knapsack Problem

Problem 8. Given an integer K and n items of different sizes such that the i-th item has an integer size
ki, find a subset of the items whose sizes sum to exactly K, or determine that no such subset exists.

Design Idea: use strong induction so that solutions to all smaller instances may be used.

The Knapsack Problem (cont.)

• Let P (n, K) denote the problem where n is the number of items and K is the size of the knapsack.

• Induction hypothesis

We know how to solve P (n− 1, K).

• Stronger induction hypothesis

We know how to solve P (n− 1, k), for all 0 ≤ k ≤ K.

The Knapsack Problem (cont.)
An example of the table constructed for the knapsack problem:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

O - - - - - - - - - - - - - - - -
k1= 2 O - I - - - - - - - - - - - - - -
k2 = 3 O - O I - I - - - - - - - - - - -
k3 = 5 O - O O - O - I I - I - - - - - -
k4 = 6 O - O O - O I O O I O I - I I - I

“I”: a solution containing this item has been found.
“O”: a solution without this item has been found.
“-”: no solution has yet been found.

7



The Knapsack Problem (cont.)

Algorithm Knapsack (S, K);
P [0, 0].exist := true;
for k := 1 to K do

P [0, k].exist := false;
for i := 1 to n do

for k := 0 to K do
P [i, k].exist := false;
if P [i− 1, k].exist then

P [i, k].exist := true;
P [i, k].belong := false

else if k − S[i] ≥ 0 then
if P [i− 1, k − S[i]].exist then

P [i, k].exist := true;
P [i, k].belong := true

8


