Algorithms 2012: Advanced Graph Algorithms

(Based on [Manber 1989])

Yih-Kuen Tsay

1 Biconnected Components

Biconnected Components

e An undirected graph is biconnected if there are at least two vertex-disjoint paths from every vertex to
every other vertex.

e A graph is not biconnected if and only if there is a vertex whose removal disconnects the graph. Such
a vertex is called an articulation point.

e A biconnected component is a mazximal subset of the edges such that its induced subgraph is biconnected
(namely, there is no other subset that contains it and induces a biconnected graph).

Biconnected Components (cont.)

Figure 7.25 The structure of a nonbiconnected graph.

Source: [Manber 1989].

Biconnected Components (cont.)

Lemma 1 (7.9). Two distinct edges e and f belong to the same biconnected component if and only if there
is a cycle containing both of them.

Lemma 2 (7.10). Fach edge belongs to exactly one biconnected component.



Biconnected Components (cont.)

(a) (b)

Figure 7.26 An edge that connects two different biconnected components. (a) The com-
ponents corresponding to the graph of Fig. 7.25 with the articulation points indicated. (b)
The biconnected component tree.

Source: [Manber 1989].

Biconnected Components (cont.)

Figure 7.27 Computing the High values.

Source: [Manber 1989].

Biconnected Components (cont.)

Algorithm Biconnected_Components(G, v, n);

begin
for every vertex w do w.DFS_Number := 0;
DFS_N := n;
BC(v)

end



procedure BC(v);

begin
v.DFS_Number := DFS_N;,
DFS_N :=DFS_N —1;
insert v into Stack;
v.high := v.DFS_Number;

Biconnected Components (cont.)

for all edges (v, w) do
insert (v, w) into Stack;
if w is not the parent of v then
if w.DFS_Number =0 then
BC(w);
if w.high <v.DFS_Number then
remove all edges and vertices
from Stack until v is reached;
insert v back into Stack;
v.high := max(v.high,w.high)
else
v.high := max(v.high,w.DFS_Number)
end

Biconnected Components (cont.)

procedure BC(v);
begin
v.DFS_Number := DFS_N;,
DFS_N := DFS_N — 1;
v.high := v.DFS_Number;
for all edges (v, w) do
if w is not the parent of v then
insert (v, w) into Stack;
if w.DFS_Number = 0 then
BC(w);
if w.high < v.DFS_Number then
remove all edges from Stack
until (v, w) is reached;
v.high := max(v.high,w.high)
else
v.high := max(v.high,w.DFS_Number)
end

Biconnected Components (cont.)



6 13
PRENTINN
b6 s

613
¢ 16 o1s

16 15
.o
roe s
a6 s
¢ 6
£ s
< os
DR
v s

6 1
i s
o s
iote s
Lo s
16 s

G . s
® 6 s
Vo6 s
a6
o6 s
PR
% 16

1o 16 16
7o s
W s
m o s
G) 16 16

15

15

15

15

s
15

5

Figure 7.29 An example of computing /igh values and biconnected components

Source: [Manber 1989].

Even-Length Cycles

Problem 3. Given a connected undirected graph G = (V, E), determine whether it contains a cycle of even

length.

Theorem 4. FEvery biconnected graph that has more than one edge and is not merely an odd-length cycle

contains an even-length cycle.

Even-Length Cycles (cont.)

Vi

1

)

Vil

Figure 7.35 Finding an even-length cycle.

Source: [Manber 1989].



2 Strongly Connected Components
Strongly Connected Components

e A directed graph is strongly connected if there is a directed path from every vertex to every other
vertex.

e A strongly connected component is a maximal subset of the vertices such that its induced subgraph is
strongly connected (namely, there is no other subset that contains it and induces a strongly connected

graph).

Strongly Connected Components (cont.)

Lemma 5 (7.11). Two distinct vertices belong to the same strongly connected component if and only if there
is a circuit containing both of them.

Lemma 6 (7.12). Fach vertex belongs to exactly one strongly connected component.

Strongly Connected Components (cont.)

Figure 7.30 A directed graph and its strongly connected component graph.

Source: [Manber 1989].

Strongly Connected Components (cont.)



Figure 7.31 Adding an edge connecting two different strongly connected components.

Source: [Manber 1989].

Strongly Connected Components (cont.)

Figure 7.32 The effect of cross edges.

Source: [Manber 1989].

Strongly Connected Components (cont.)

Algorithm Strongly_Connected_Components(G,n);
begin
for every vertex v of G do
v.DFS_Number := 0;
v.component := 0;
Current_Component :== 0; DFS_N := n;
while v.DFS_Number = 0 for some v do



SCC(v)
end

procedure SCC(v);

begin
v.DFS_Number := DFS_N;,
DFS_N := DFS_N —1;
insert v into Stack;
v.high := v.DFS_Number;

Strongly Connected Components (cont.)

for all edges (v,w) do
if w.DFS_Number =0 then
SCC(w);
v.high := max(v.high,w.high)
else if w.DFS_Number > v.DFS_Number
and w.component = 0 then
v.high := max(v.high,w.DFS_Number)
if v.high = v.DFS_Number then
Current_Component := Current_Component + 1;
repeat
remove z from the top of Stack;
x.component := Current_Component
until z = v
end

Strongly Connected Components (cont.)

4
Y

aonou
LR T TR T |
TRRTENT]

Figure 7.34 An example of computing High valucs and strongly connected components.

Source: [Manber 1989].



Odd-Length Cycles

Problem 7. Given a directed graph G = (V, E), determine whether it contains a (directed) cycle of odd
length.

e A cycle must reside completely within a strongly connected component (SCC), so we exam each SCC
separately.

e Mark the nodes of an SCC with “even” or “odd” using DFS.

e If we have to mark a node that is already marked in the opposite, then we have found an odd-length
cycle.

3 Network Flows
Network Flows

e Consider a directed graph, or network, G = (V, E') with two distinguished vertices: s (the source) with
indegree 0 and ¢ (the sink) with outdegree 0.

e Each edge e in E has an associated positive weight c(e), called the capacity of e.

Network Flows (cont.)

e A flow is a function f on E that satisfies the following two conditions:
1. 0 < f(e) < c(e).
2. Zf(u,v) = Zf(v,w), forallv e V — {s,t}.

e The network flow problem is to maximize the flow f for a given network G.

Network Flows (cont.)

Figure 7.39 Reducing bipartite matching to network flow (the directions of all the
edges are from left to right).

Source: [Manber 1989].



Augmenting Paths

e An augmenting path w.r.t. a given flow f (of a network G) is a directed path from s to ¢ consisting
of edges from G, but not necessarily in the same diretion; each of these edges (v, u) satisfies exactly
one of:

1. (v,u) is in the same direction as it is in G, and f(v,u) < ¢(v,u). (forward edge)

2. (v,u) is in the opposite direction in G (namely, (u,v) € E), and f(u,v) > 0. (backward edge)

e If there exists an augmenting path w.r.t. a flow f (f admits an augmenting path), then f is not
maximum.

Augmenting Paths (cont.)

413

615 1/1

5i5 w

Figure 7.40 An example of a network with a (nonmaximum) flow.

Source: [Manber 1989].

Augmenting Paths (cont.)

4/3
5i5 312 33
: 715 Vo 44
$ T » t
6/5 11
5/5

Figure 7.41 The result of augmenting the flow of Fig. 7.40.

Source: [Manber 1989].



Properties of Network Flows

Theorem 8 (Augmenting-Path). A flow f is mazimum if and only if it admits no augmenting path.

A cut is a set of edges that separate s from ¢, or more precisely a set of the form {(v,w) € E |
v € Aand w e B}, where B=V — A such that s € A and ¢t € B.

Theorem 9 (Max-Flow Min-Cut). The value of a mazimum flow in a network is equal to the minimum
capacity of a cut.
Properties of Network Flows (cont.)

Theorem 10 (Integral-Flow). If the capacities of all edges in the network are integers, then there is a
mazimum flow whose value is an integer.

Residual Graphs

e The residual graph with respect to a network G = (V, E) and a flow f is the network R = (V| F),
where F' consists of all forward and backward edges and their capacities are given as follows:

1. cr(v,w) = c¢(v,w) — f(v,w) if (v,w) is a forward edge and

2. cr(v,w) = f(w,v) if (v,w) is a backward edge.

e An augmenting path is thus a regular directed path from s to ¢ in the residual graph.

Residual Graphs (cont.)

Figure 7.42 A bad example of network flow.

Source: [Manber 1989].

10



