
Algorithms 2014: Analysis of Algorithms

(Based on [Manber 1989])

Yih-Kuen Tsay

1 Introduction

Introduction

• The purpose of algorithm analysis is to predict the behavior (running time, space requirement, etc.)
of an algorithm without implementing it on a specific computer. (Why?)

• As the exact behavior of an algorithm is hard to predict, the analysis is usually an approximation:

– Relative to the input size (usually denoted by n): input possibilities too enormous to elaborate

– Asymptotic: should care more about larger inputs

– Worst-Case: easier to do, often representative (Why not average-case?)

• Such an approximation is usually good enough for comparing different algorithms for the same problem.

Complexity

• Theoretically, “complexity of an algorithm” is a more precise term for “approximate behavior of an
algorithm”.

• Two most important measures of complexity:

– Time Complexity an upper bound on the number of steps that the algorithm performs.

– Space Complexity an upper bound on the amount of temporary storage required for running the
algorithm (excluding the input, the output, and the program itself).

• We will focus on time complexity.

Comparing Running Times

• How do we compare the following running times?

1. 100n

2. 2n2 + 50

3. 100n1.8

• We will study an approach (the O notation) that allows us to ignore constant factors and concentrate
on the behavior as n goes to infinity.

• For most algorithms, the constants in the expressions of their running times tend to be small.

1

2 The O Notation

The O Notation

• A function g(n) is O(f(n)) for another function f(n) if there exist constants c and N such that, for all
n ≥ N , g(n) ≤ cf(n).

• The function g(n) may be substantially less than cf(n); the O notation bounds it only from above.

• The O notation allows us to ignore constants conveniently.

• Examples:

– 5n2 + 15 = O(n2). (cf. 5n2 + 15 ≤ O(n2) or 5n2 + 15 ∈ O(n2))

– 5n2 + 15 = O(n3). (cf. 5n2 + 15 ≤ O(n3) or 5n2 + 15 ∈ O(n3))

– In an expression, T (n) = 3n2 +O(n).

The O Notation (cont.)

• No need to specify the base of a logarithm.

– log2 n = log10 n
log10 2 = 1

log10 2 log10 n.

– For example, we can just write O(log n).

• O(1) denotes a constant.

Properties of O

• We can add and multiply with O.

Lemma 1 (3.2). 1. If f(n) = O(s(n)) and g(n) = O(r(n)), then f(n) + g(n) = O(s(n) + r(n)). 2. If
f(n) = O(s(n)) and g(n) = O(r(n)), then f(n) · g(n) = O(s(n) · r(n)).

• However, we cannot subtract or divide with O.

– 2n = O(n), n = O(n), and 2n− n = n 6= O(n− n).

– n2 = O(n2), n = O(n2), and n2/n = n 6= O(n2/n2).

3 Speed of Growth

Polynomial vs. Exponential

• A function f(n) is monotonically growing if n1 ≥ n2 implies that f(n1) ≥ f(n2).

• An exponential function grows at least as fast as a polynomial function does.

Theorem 2 (3.1). For all constants c > 0 and a > 1, and for all monotonically growing functions
f(n), (f(n))c = O(af(n)).

• Examples:

– Take n as f(n), nc = O(an).

– Take loga n as f(n), (loga n)c = O(aloga n) = O(n).

2

Speed of Growth

Source: [E. Horowitz et al. 1998].

Speed of Growth (cont.)

Source: [Manber 1989].

O, o, Ω, and Θ

• Let T (n) be the number of steps required to solve a given problem for input size n.

• We say that T (n) = Ω(g(n)) or the problem has a lower bound of Ω(g(n)) if there exist constants c
and N such that, for all n ≥ N , T (n) ≥ cg(n).

• If a certain function f(n) satisfies both f(n) = O(g(n)) and f(n) = Ω(g(n)), then we say that f(n) =
Θ(g(n)).

• We say that f(n) = o(g(n)) if lim
n→∞

f(n)

g(n)
= 0.

Polynomial vs. Exponential (cont.)

• An exponential function grows faster than a polynomial function does.

3

Theorem 3 (3.3). For all constants c > 0 and a > 1, and for all monotonically growing functions
f(n), we have

(f(n))c = o(af(n)).

• Consider a previous example again: Take loga n as f(n). For all c > 0 and a > 1,

(loga n)c = o(aloga n) = o(n).

4 Sums

Sums

• Techniques for summing expressions are essential for complexity analysis.

• For example, given that we know

S0(n) =

n∑
i=1

1 = n

and

S1(n) =

n∑
i=1

i = 1 + 2 + 3 + · · ·+ n =
n(n+ 1)

2
,

we want to compute the sum

S2(n) =

n∑
i=1

i2 = 12 + 22 + 32 + · · ·+ n2.

Sums (cont.)
From

(i+ 1)3 = i3 + 3i2 + 3i+ 1,

we have
(i+ 1)3 − i3 = 3i2 + 3i+ 1.

23 − 13 = 3× 12 + 3× 1 + 1
33 − 23 = 3× 22 + 3× 2 + 1
43 − 33 = 3× 32 + 3× 3 + 1
· · · · · · · · ·

(n+ 1)3 − n3 = 3× n2 + 3× n+ 1
(n+ 1)3 − 1 = 3× S2(n) + 3× S1(n) + S0(n)

(S3(n+ 1)− S3(1))− S3(n) = 3× S2(n) + 3× S1(n) + S0(n)

Sums (cont.)

• So, we have
(n+ 1)3 − 1 = 3× S2(n) + 3× S1(n) + S0(n).

• Given S0(n) and S1(n), the sum S2(n) can be computed by straightforward algebra.

• Recall that the left-hand side (n+ 1)3 − 1 equals (S3(n+ 1)− S3(1))− S3(n), a result from “shifting
and canceling” terms of two sums.

• This generalizes to Sk(n), for k > 2.

• Similar shifting and canceling techniques apply to other kinds of sums.

4

5 Recurrence Relations

Recurrence Relations

• A recurrence relation is a way to define a function by an expression involving the same function.

• The Fibonacci numbers can be defined as follows: F (1) = 1
F (2) = 1
F (n) = F (n− 2) + F (n− 1)

We would need k − 2 steps to compute F (k).

• It is more convenient to have an explicit (or closed-form) expression.

• To obtain the explicit expression is called solving the recurrence relation.

Guessing and Proving an Upper Bound

• Recurrence relation:

{
T (2) = 1
T (2n) ≤ 2T (n) + 2n− 1

• Guess: T (n) = O(n log n).

• Proof:

1. Base case: T (2) ≤ 2 log 2.

2. Inductive step: T (2n) ≤ 2T (n) + 2n− 1

≤ 2(n log n) + 2n− 1
= 2n log n+ 2n log 2− 1
≤ 2n(log n+ log 2)
= 2n log 2n

Recurrent Relations with Full History

• Example:

T (n) = c+

n−1∑
i=1

T (i),

where c is a constant and T (1) is given separately.

• T (n) − T (n − 1) = (c +
∑n−1

i=1 T (i)) − (c +
∑n−2

i=1 T (i)) = T (n − 1); hence, T (n) = 2T (n − 1). (This
holds only for n ≥ 3.)

• So, we get {
T (2) = c+ T (1)
T (n) = 2T (n− 1) if n ≥ 3

which is easier to solve.

• Other examples as a reading assignment ...

5

6 Divide and Conquer Relations

Divide and Conquer Relations

• The running time T (n) of a divide-and-conquer algorithm satisfies

T (n) = aT (n/b) + cnk

where

– a is the number of subproblems,

– n/b is the size of each subproblem, and

– cnk is the running time of the solutions-combining algorithm.

Divide and Conquer Relations (cont.)
Assume, for simplicity, n = bm (n

bm = 1, n
bm−1 = b, etc.).

T (n) = aT (n
b) + cnk

= a(aT (n
b2) + c(n

b)k) + cnk

= a(a(aT (n
b3) + c(n

b2)k) + c(n
b)k) + cnk

· · ·
= a(a(· · · (aT (n

bm) + c(n
bm−1)k) + · · ·) + c(n

b)k) + cnk

Assuming T (1) = c,

T (n) = c

m∑
i=0

am−ibik = cam
m∑
i=0

(
bk

a
)i.

Three cases: bk

a < 1, bk

a = 1, and bk

a > 1.

Divide and Conquer Relations (cont.)

Theorem 4 (3.4). The solution of the recurrence relation T (n) = aT (n/b) + cnk, where a and b are integer
constants, a ≥ 1, b ≥ 2, and c and k are positive constants, is

T (n) =

 O(nlogb a) if a > bk

O(nk log n) if a = bk

O(nk) if a < bk

7 Useful Facts

Useful Facts

• Harmonic series

Hn =

n∑
k=1

1

k
= lnn+ γ +O(1/n),

where γ = 0.577 . . . is Euler’s constant.

• Sum of logarithms ∑n
i=1blog2 ic = (n+ 1)blog2 nc − 2blog2 nc+1 + 2

= Θ(n log n).

6

Useful Facts (cont.)

• Bounding a summation by an integral:

If f(x) is monotonically increasing, then

n∑
i=1

f(i) ≤
∫ n+1

1

f(x)dx.

If f(x) is monotonically decreasing, then

n∑
i=1

f(i) ≤ f(1) +

∫ n

1

f(x)dx.

• Stirling’s approximation

n! =
√

2πn
(n
e

)n
(1 +O(1/n)).

7

