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1 Design Methods

Design Methods

• Greedy

• Divide-and-Conquer

• Dynamic Programming

• Branch-and-Bound

• . . .

2 Dynamic Programming

Principles of Dynamic Programming

• Property of Optimal Substructure (Principle of Optimality):

An optimal solution to a problem contains optimal solutions to its subproblems.

• A particular subproblem or subsubproblem typically recurs while one tries different decompositions of
the original problem.

• To reduce running time, optimal solutions to subproblems are computed only once and stored (in an
array) for subsequent uses.

Development by Dynamic Programming

1. Characterize the structure of an optimal solution.

2. Recursively define the value of an optimal solution.

3. Compute the value of an optimal solution in a bottom-up fashion.

4. Construct an optimal solution from computed information.
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3 Matrix-Chain Multiplication

Matrix-Chain Multiplication

Problem 1. Given a chain A1, A2, · · · , An of matrices where Ai, 1 ≤ i ≤ n, has dimension pi−1 × pi,
fully parenthesize (i.e., find a way to evaluate) the product A1A2 · · ·An such that the number of scalar
multiplications is minimum.

• Why is dynamic programming a feasible approach?

• To evaluate A1A2 · · ·An, one first has to evaluate A1A2 · · ·Ak and Ak+1Ak+2 · · ·An for some k and
then multiply the two resulting matrices.

• An optimal way for evaluating A1A2 · · ·An must contain optimal ways for evaluating A1A2 · · ·Ak and
Ak+1Ak+2 · · ·An for some k.

Matrix-Chain Multiplication (cont.)
Let m[i, j] be the minimum number of scalar multiplications needed to compute AiAi+1 · · ·Aj , where

1 ≤ i ≤ j ≤ n.

m[i, j] =

{
0 if i = j
min
i≤k<j

{m[i, k] + m[k + 1, j] + pi−1pkpj} if i < j

Matrix-Chain Multiplication (cont.)

Algorithm Matrix Chain Order(n, p);
begin

for i := 1 to n do
m[i, i] := 0;

for l := 2 to n do { l is the chain length }
for i := 1 to (n− l + 1) do

j := i + l − 1;
m[i, j] := ∞;
for k := i to (j − 1) do

if m[i, k] + m[k + 1, j] + p[i− 1]p[k]p[j] < m[i, j] then
m[i, j] := m[i, k] + m[k + 1, j] + p[i− 1]p[k]p[j]

end

Recursive Implementation

Algorithm Recursive Matrix Chain(p, i, j);
begin

if i = j then return 0;
m[i, j] := ∞;
for k := i to (j − 1) do

q := Recursive Matrix Chain(p, i, k)+
Recursive Matrix Chain(p, k + 1, j) + p[i− 1]p[k]p[j];

if q < m[i, j] then
m[i, j] := q;

return m[i, j]
end
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Recursive Implementation (cont.)

Source: [Cormen et al. 2006].

Recursion with Memoization

Algorithm Memoized Matrix Chain(n, p);
begin

for i := 1 to n do
for j := i to n do

m[i, j] := ∞;
return Lookup Matrix Chain(p, i, n)

end

Recursion with Memoization (cont.)

Function Lookup Matrix Chain(p, i, j);
begin

if m[i, j] <∞ then return m[i, j];
if i = j then

m[i, j] := 0;
else

for k := i to (j − 1) do
q := Lookup Matrix Chain(p, i, k)+

Lookup Matrix Chain(p, k + 1, j) + p[i− 1]p[k]p[j];
if q < m[i, j] then

m[i, j] := q;
return m[i, j]

end

4 Single-Source Shortest Paths

Single-Source Shortest Paths

Problem 2. Given a weighted directed graph G = (V,E) with no negative-weight cycles and a vertex v, find
(the lengths of) the shortest paths from v to all other vertices.
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• Notice that edges with negative weights are permitted; so, Dijkstra’s algorithm does not work here.

• A shortest path from v to any other vertex u contains at most n− 1 edges.

• A shortest path from v to u with at most k (> 1) edges must be composed of a shortest path from v
to u′ with at most k − 1 edges and the edge from u′ to u, for some u′.

Single-Source Shortest Paths (cont.)
Denote by Dl(u) the length of a shortest path from v to u containing at most l edges; particularly,

Dn−1(u) is the length of a shortest path from v to u (with no restrictions).

D1(u) =

 length(v, u) if (v, u) ∈ E
0 if u = v
∞ otherwise

Dl(u) = min{Dl−1(u), min
(u′,u)∈E

{Dl−1(u′) + length(u′, u)}},

2 ≤ l ≤ n− 1

Single-Source Shortest Paths (cont.)

Algorithm Single Source Shortest Paths(length);
begin

D[v] := 0;
for all u 6= v do

if (v, u) ∈ E then
D[u] := length(v, u)

else D[u] := ∞;
for k := 2 to n− 1 do

for all u 6= v do
for all u′ such (u′, u) ∈ E do

if D[u′] + length[u′, u] < D[u] then
D[u] := D[u′] + length[u′, u]

end

5 All-Pairs Shortest Paths

All-Pairs Shortest Paths

Problem 3. Given a weighted directed graph G = (V,E) with no negative-weight cycles, find (the lengths
of) the shortest paths between all pairs of vertices.

• Consider a shortest path from vi to vj and an arbitrary intermediate vertex vk (if any) on this path.

• The subpath from vi to vk must also be a shortest path from vi to vk; analogously for the subpath
from vk to vj .
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All-Pairs Shortest Paths (cont.)
Index the vertices from 1 through n.
Denote by W k(i, j) the length of a shortest path from vi to vj going through no vertex of index greater

than k, where 1 ≤ i, j ≤ n and 0 ≤ k ≤ n; particularly, Wn(i, j) is the length of a shortest path from vi to
vj .

W 0(i, j) =

 length(i, j) if (i, j) ∈ E
0 if i = j
∞ otherwise

W k(i, j) = min{W k−1(i, j), W k−1(i, k) + W k−1(k, j)}, 1 ≤ k ≤ n

All-Pairs Shortest Paths (cont.)

Algorithm All Pairs Shortest Paths(length);
begin

for i := 1 to n do
for j := 1 to n do

if (i, j) ∈ E then W [i, j] := length(i, j)
else W [i, j] := ∞;

for i := 1 to n do W [i, i] := 0;
for k := 1 to n do

for i := 1 to n do
for j := 1 to n do

if W [i, k] + W [k, j] < W [i, j] then
W [i, j] := W [i, k] + W [k, j]

end
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