Algorithms [Compiled on March 6, 2017] Spring 2017

Appendix to Chapter 3 of [Manber]:
Solving a Recurrence Relation with Generating Functions

Generating Functions provide a systematic, effective means for representing and manipulating
infinite sequences (of numbers). We use them here to derive a closed-form representation of the

Fibonacci sequence as defined by the following recurrence relation:
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Below are two basic generating functions; the second one is a generalization of the first and will

be used in our solution.
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Let F(2) =04 Fiz + Fy2® + F323 + -+ - 4+ F,2" + - - - (a generating function for the Fibonacci
sequence).
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Continuing from (1 — z — 22)F(2) = 2,
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