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Introduction

The basic idea of reduction is to solve a problem with the
solution to another “similar” problem.

When Problem A can be reduced (efficiently) to Problem B ,
there are two consequences:

A solution to Problem B may be used to solve Problem A.
If A is known to be “hard”, then B is also necessarily “hard”.

One should avoid the pitfall of reducing a problem to another
that is too general or too hard.
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Matching

Given an undirected graph G = (V ,E ), a matching is a set of
edges that do not share a common vertex.

A maximum matching is one with the maximum number of
edges.

A maximal matching is one that cannot be extended by adding
any other edge.
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Bipartite Matching

A bipartite graph G = (V ,E ,U) is a graph with V ∪ U as the
set of vertices and E as the set of edges such that

V and U are disjoint and
The edges in E connect vertices from V to vertices in U.

Problem

Given a bipartite graph G = (V ,E ,U), find a maximum matching in
G .
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Networks

Consider a directed graph, or network, G = (V ,E ) with two
distinguished vertices: s (the source) with indegree 0 and t (the
sink) with outdegree 0.

Each edge e in E has an associated positive weight c(e), called
the capacity of e.
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The Network Flow Problem

A flow is a function f on E that satisfies the following two
conditions:

1. 0 ≤ f (e) ≤ c(e).

2.
∑
u

f (u, v) =
∑
w

f (v ,w), for all v ∈ V − {s, t}.

The network flow problem is to maximize the flow f for a
given network G .
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Bipartite Matching to Network Flow

Source: [Manber 1989].
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Bipartite Matching to Network Flow (cont.)

Mapping from the input G = (V ,E ,U) of the bipartite
matching problem to the input G ′ = (V ′,E ′) and c of the
network flow problem:

The network is G ′ = (V ′,E ′) where

V ′ = {s} ∪ V ∪ U ∪ {t}
E ′ = {(s, v) | v ∈ V } ∪ E ∪ {(u, t) | u ∈ U}

The capacity for every e ∈ E ′ is 1, i.e., ∀e ∈ E ′, c(e) = 1.

Correspondence between the two solutions

A maximum flow f in G ′ defines a maximum matching Mf in G .
A maximum matching M in G induces a maximum flow fM in
G ′.
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Notations

Let v denote a vector (v1, v2, . . . , vn) of n constants or n
variables.

In the following, a, b, c , and e are vectors of n constants.

And, x and y are vectors of n variables.

The (inner or dot) product a · x of two vectors a and x is defined
as follows:

a · x =
n∑

i=1

ai · xi
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Linear Programming

Objective function:
c · x

Equality constraints:

e1 · x = d1
e2 · x = d2

...
em · x = dm

Inequality constraints may be turned into equality constraints by
introducing slack variables.

The goal is to maximize (or minimize) the value of the objective
function, subject to the equality constraints.
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Network Flow to Linear Programming

Mapping from the input G = (V ,E ) and c of the network flow
problem to the objective function and constraints of linear
programming:

Let x1, x2, . . . , xn represent the flow of the n edges.
Objective function ∑

i∈S
xi

where S is the set of edges leaving the source.
Inequality constraints

xi ≤ ci , for all i , 1 ≤ i ≤ n

where ci is the capacity of edge i .
Equality constraints∑

i leaves v

xi −
∑

j enters v

xj = 0, for every v ∈ V \ {s, t}
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