Design by Induction (Based on [Manber 1989])

Yih-Kuen Tsay

Department of Information Management
National Taiwan University

Introduction

- It is not necessary to design the steps required to solve a problem from scratch.
It is sufficient to guarantee the following:

1. It is possible to solve one small instance or a few small instances of the problem. (base case)
2. A solution to every problem/instance can be constructed from solutions to smaller problems/instances. (inductive step)

Evaluating Polynomials

Problem

Given a sequence of real numbers $a_{n}, a_{n-1}, \cdots, a_{1}, a_{0}$, and a real number x, compute the value of the polynomial

$$
P_{n}(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}
$$

Evaluating Polynomials

Problem

Given a sequence of real numbers $a_{n}, a_{n-1}, \cdots, a_{1}, a_{0}$, and a real number x, compute the value of the polynomial

$$
P_{n}(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}
$$

Motivation: different approaches to the inductive step may result in algorithms of very different time complexities.

Evaluating Polynomials (cont.)

Let $P_{n-1}(x)=a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$.

- Induction hypothesis (first attempt)

We know how to evaluate a polynomial represented by the input $a_{n-1}, \cdots, a_{1}, a_{0}$, at the point x, i.e., we know how to compute $P_{n-1}(x)$.
$P_{n}(x)=a_{n} x^{n}+P_{n-1}(x)$.

Evaluating Polynomials (cont.)

- Induction hypothesis (second attempt)

We know how to compute $P_{n-1}(x)$, and we know how to compute x^{n-1}.
$P_{n}(x)=a_{n} x\left(x^{n-1}\right)+P_{n-1}(x)$.

Evaluating Polynomials (cont.)

Let $P_{n-1}^{\prime}(x)=a_{n} x^{n-1}+a_{n-1} x^{n-2}+\cdots+a_{1}$.
Induction hypothesis (final attempt)
We know how to evaluate a polynomial represented by the coefficients $a_{n}, a_{n-1}, \cdots, a_{1}$, at the point x, i.e., we know how to compute $P_{n-1}^{\prime}(x)$.
$P_{n}(x)=P_{n}^{\prime}(x)=P_{n-1}^{\prime}(x) \cdot x+a_{0}$.

Evaluating Polynomials (cont.)

More generally,

$$
\left\{\begin{array}{l}
P_{0}^{\prime}(x)=a_{n} \\
P_{i}^{\prime}(x)=P_{i-1}^{\prime}(x) \cdot x+a_{n-i}, \text { for } 1 \leq i \leq n
\end{array}\right.
$$

Evaluating Polynomials (cont.)

Algorithm Polynomial_Evaluation (\bar{a}, x); begin

$$
P:=a_{n} ;
$$

$$
\text { for } i:=1 \text { to } n \text { do }
$$

$$
P:=x * P+a_{n-i}
$$

end

This algorithm is known as Horner's rule.

Maximal Induced Subgraph

Problem

Given an undirected graph $G=(V, E)$ and an integer k, find an induced subgraph $H=(U, F)$ of G of maximum size such that all vertices of H have degree $\geq k$ (in H), or conclude that no such induced subgraph exists.

Maximal Induced Subgraph

Problem

Given an undirected graph $G=(V, E)$ and an integer k, find an induced subgraph $H=(U, F)$ of G of maximum size such that all vertices of H have degree $\geq k$ (in H), or conclude that no such induced subgraph exists.

Design Idea: in the inductive step, we try to remove one vertex (that cannot possibly be part of the solution) to get a smaller instance.

Maximal Induced Subgraph (cont.)

Recursive:

Algorithm Max_Ind_Subgraph (G, k);

begin
if the degree of every vertex of $G \geq k$ then
Max_Ind_Subgraph :=G;
else let v be a vertex of G with degree $<k$; Max_Ind_Subgraph := Max_Ind_Subgraph($G-v, k)$; end

Maximal Induced Subgraph (cont.)

- Recursive:

Algorithm Max_Ind_Subgraph (G, k);
begin
if the degree of every vertex of $G \geq k$ then
Max_Ind_Subgraph :=G;
else let v be a vertex of G with degree $<k$;
Max_Ind_Subgraph := Max_Ind_Subgraph($G-v, k)$;
end

- Iterative:

Algorithm Max_Ind_Subgraph (G, k);
begin
while the degree of some vertex v of $G<k$ do

$$
G:=G-v
$$

Max_Ind_Subgraph :=G;
end

One-to-One Mapping

Problem

Given a finite set A and a mapping f from A to itself, find a subset $S \subseteq A$ with the maximum number of elements, such that (1) the function f maps every element of S to another element of S (i.e., f maps S into itself), and (2) no two elements of S are mapped to the same element (i.e., f is one-to-one when restricted to S).

One-to-One Mapping

Problem

Given a finite set A and a mapping f from A to itself, find a subset $S \subseteq A$ with the maximum number of elements, such that (1) the function f maps every element of S to another element of S (i.e., f maps S into itself), and (2) no two elements of S are mapped to the same element (i.e., f is one-to-one when restricted to S).

Design Idea: similar to the previous problem; in the inductive step, we try to remove one element (that cannot possibly be part of the solution) to get a smaller instance.

One-to-One Mapping

Problem

Given a finite set A and a mapping f from A to itself, find a subset $S \subseteq A$ with the maximum number of elements, such that (1) the function f maps every element of S to another element of S (i.e., f maps S into itself), and (2) no two elements of S are mapped to the same element (i.e., f is one-to-one when restricted to S).

Design Idea: similar to the previous problem; in the inductive step, we try to remove one element (that cannot possibly be part of the solution) to get a smaller instance.

An element that is not mapped to may be removed.

One-to-One Mapping (cont.)

Algorithm Mapping (f, n); begin
$S:=A ;$
for $j:=1$ to n do $c[j]:=0$;
for $j:=1$ to n do increment $c[f[j]]$;
for $j:=1$ to n do
if $c[j]=0$ then put j in Queue;
while Queue not empty do
remove i from the top of Queue;
$S:=S-\{i\} ;$
decrement $c[f[i]]$;
if $c[f[i]]=0$ then put $f[i]$ in Queue
end

Celebrity

Problem

Given an $n \times n$ adjacency matrix, determine whether there exists an i (the "celebrity") such that all the entries in the i-th column (except for the ii-th entry) are 1, and all the entries in the i-th row (except for the ii-th entry) are 0 .

Note: A celebrity corresponds to a sink of the directed graph.
Note: Every directed graph has at most one sink.

Celebrity

Problem

Given an $n \times n$ adjacency matrix, determine whether there exists an i (the "celebrity") such that all the entries in the i-th column (except for the ii-th entry) are 1, and all the entries in the i-th row (except for the ii-th entry) are 0 .

Note: A celebrity corresponds to a sink of the directed graph.
Note: Every directed graph has at most one sink.
Motivation: the trivial solution has a time complexity of $O\left(n^{2}\right)$. Can we do better, in $O(n)$?

Celebrity

Problem

Given an $n \times n$ adjacency matrix, determine whether there exists an i (the "celebrity") such that all the entries in the i-th column (except for the ii-th entry) are 1, and all the entries in the i-th row (except for the ii-th entry) are 0 .

Note: A celebrity corresponds to a sink of the directed graph.
Note: Every directed graph has at most one sink.
Motivation: the trivial solution has a time complexity of $O\left(n^{2}\right)$. Can we do better, in $O(n)$?

To achieve $O(n)$ time, we must reduce the problem size by at least one in constant time.

Celebrity (cont.)

Basic idea: check whether i knows j.

Celebrity (cont.)

Basic idea: check whether i knows j.
In either case, one of the two may be eliminated.

Celebrity (cont.)

Basic idea: check whether i knows j. In either case, one of the two may be eliminated.

The $O(n)$ algorithm proceeds in two stages:

- Eliminate a node every round until only one is left.

Check whether the remaining one is truly a celebrity.

Celebrity (cont.)

Algorithm Celebrity (Know);

 begin$$
\begin{aligned}
& i:=1 ; \\
& j:=2 ; \\
& \text { next }:=3 ; \\
& \text { while next } \leq n+1 \text { do } \\
& \quad \text { if } K \text { now }[i, j] \text { then } i:=\text { next } \\
& \quad \text { else } j:=\text { next; } \\
& \quad \text { next }:=\text { next }+1 ; \\
& \text { if } i=n+1 \text { then candidate }:=j \\
& \quad \text { else candidate }:=i ;
\end{aligned}
$$

Celebrity (cont.)

```
wrong \(:=\) false;
\(k:=1\);
Know[candidate, candidate] := false;
while not wrong and \(k \leq n\) do
        if Know[candidate, \(k\) ] then wrong \(:=\) true;
    if not Know[k, candidate] then
        if candidate \(\neq k\) then wrong \(:=\) true;
    \(k:=k+1 ;\)
if not wrong then celebrity \(:=\) candidate
    else celebrity \(:=0\);
```

end

The Skyline Problem

Problem

Given the exact locations and shapes of several rectangular buildings in a city, draw the skyline (in two dimension) of these buildings, eliminating hidden lines.

Motivation: different approaches to the inductive step may result in algorithms of very different time complexities.

The Skyline Problem

Problem

Given the exact locations and shapes of several rectangular buildings in a city, draw the skyline (in two dimension) of these buildings, eliminating hidden lines.

Motivation: different approaches to the inductive step may result in algorithms of very different time complexities.

Compare: adding buildings one by one to an existing skyline vs. merging two skylines of about the same size

The Skyline Problem

Adding one building at a time:

$$
\left\{\begin{array}{l}
T(1)=O(1) \\
T(n)=T(n-1)+O(n), n \geq 2
\end{array}\right.
$$

Time complexity: $O\left(n^{2}\right)$.

- Merging two skylines every round:

$$
\left\{\begin{array}{l}
T(1)=O(1) \\
T(n)=2 T\left(\frac{n}{2}\right)+O(n), n \geq 2
\end{array}\right.
$$

Time complexity: $O(n \log n)$.

Representation of a Skyline

(1,11,5), (2,6,7), (3,13,9), (12,7,16), (14,3,25), (19,18,22), $(23,13,29)$, and $(24,4,28)$.

Representation of a Skyline (cont.)

$(1,11,3, \mathbf{1 3}, 9, \mathbf{0}, 12, \mathbf{7}, 16, \mathbf{3}, 19, \mathbf{1 8}, 22, \mathbf{3}, 23, \mathbf{1 3}, 29)$.

Adding a Building

Add (5,9,26) to (1, 11,3,13,9,0,12,7,16,3,19,18,22,3,23,13,29).

The skyline becomes ($1, \mathbf{1 1}, 3, \mathbf{1 3}, 9,9,19,18,22,9,23,13,29)$.

Merging Two Skylines

Figure 5.7 Merging two skylines.
Source: [Manber 1989].

Balance Factors in Binary Trees

Problem

Given a binary tree T with n nodes, compute the balance factors of all nodes.

The balance factor of a node is defined as the difference between the height of the node's left subtree and the height of the node's right subtree.

Balance Factors in Binary Trees

Problem

Given a binary tree T with n nodes, compute the balance factors of all nodes.

The balance factor of a node is defined as the difference between the height of the node's left subtree and the height of the node's right subtree.

Motivation: an example of why we must strengthen the hypothesis (and hence the problem to be solved).

Balance Factors in Binary Trees (cont.)

Figure 5.8 A binary tree. The numbers represent h / b, where h is the height and b is the balance factor.

Source: [Manber 1989].

Balance Factors in Binary Trees (cont.)

Induction hypothesis

We know how to compute balance factors of all nodes in trees that have $<n$ nodes.

Balance Factors in Binary Trees (cont.)

Induction hypothesis
We know how to compute balance factors of all nodes in trees that have $<n$ nodes.
Stronger induction hypothesis
We know how to compute balance factors and heights of all nodes in trees that have $<n$ nodes.

Maximum Consecutive Subsequence

Problem

Given a sequence $x_{1}, x_{2}, \cdots, x_{n}$ of real numbers (not necessarily positive) find a subsequence $x_{i}, x_{i+1}, \cdots, x_{j}$ (of consecutive elements) such that the sum of the numbers in it is maximum over all subsequences of consecutive elements.

Example:
In the sequence $(2,-3,1.5,-1,3,-2,-3,3)$, the maximum subsequence is $(1.5,-1,3)$.

Maximum Consecutive Subsequence

Problem

Given a sequence $x_{1}, x_{2}, \cdots, x_{n}$ of real numbers (not necessarily positive) find a subsequence $x_{i}, x_{i+1}, \cdots, x_{j}$ (of consecutive elements) such that the sum of the numbers in it is maximum over all subsequences of consecutive elements.

Example:
In the sequence $(2,-3,1.5,-1,3,-2,-3,3)$, the maximum subsequence is $(1.5,-1,3)$.

Motivation: another example of strengthening the hypothesis.

Maximum Consecutive Subsequence (cont.)

Induction hypothesis

We know how to find the maximum subsequence in sequences of size $<n$.

Maximum Consecutive Subsequence (cont.)

Induction hypothesis
We know how to find the maximum subsequence in sequences of size $<n$.
Stronger induction hypothesis
We know how to find, in sequences of size $<n$, the maximum subsequence overall and the maximum subsequence that is a suffix.

Maximum Consecutive Subsequence (cont.)

Induction hypothesis
We know how to find the maximum subsequence in sequences of size $<n$.
Stronger induction hypothesis
We know how to find, in sequences of size $<n$, the maximum subsequence overall and the maximum subsequence that is a suffix.
(Reasoning: the maximum subsequence of problem size n is obtained either directly from the maximum subsequence of problem size $n-1$ or from appending the n-th element to the maximum suffix of problem size $n-1$.)

Maximum Consecutive Subsequence (cont.)

```
Algorithm Max_Consec_Subseq ( }X,n\mathrm{ );
begin
    Global_Max := 0;
    Suffix_Max := 0;
    for i:= 1 to n do
            if x[i] + Suffix_Max > Global_Max then
        Suffix_Max := Suffix_Max + x[i];
        Global_Max := Suffix_Max
            else if x[i]+ Suffix_Max>0 then
                Suffix_Max:= Suffix_Max +x[i]
            else Suffix_Max := 0
end
```


The Knapsack Problem

Problem

Given an integer K and n items of different sizes such that the i-th item has an integer size k_{i}, find a subset of the items whose sizes sum to exactly K, or determine that no such subset exists.

The Knapsack Problem

Problem

Given an integer K and n items of different sizes such that the i-th item has an integer size k_{i}, find a subset of the items whose sizes sum to exactly K, or determine that no such subset exists.

Design Idea: use strong induction so that solutions to all smaller instances may be used.

The Knapsack Problem (cont.)

Let $P(n, K)$ denote the problem where n is the number of items and K is the size of the knapsack.

- Induction hypothesis

We know how to solve $P(n-1, K)$.

The Knapsack Problem (cont.)

Let $P(n, K)$ denote the problem where n is the number of items and K is the size of the knapsack.

- Induction hypothesis

We know how to solve $P(n-1, K)$.

- Stronger induction hypothesis

We know how to solve $P(n-1, k)$, for all $0 \leq k \leq K$.

The Knapsack Problem (cont.)

Let $P(n, K)$ denote the problem where n is the number of items and K is the size of the knapsack.

- Induction hypothesis

We know how to solve $P(n-1, K)$.

- Stronger induction hypothesis

We know how to solve $P(n-1, k)$, for all $0 \leq k \leq K$.
(Reasoning: $P(n, K)$ has a solution if either $P(n-1, K)$ has a
solution or $P\left(n-1, K-k_{n}\right)$ does, provided $K-k_{n} \geq 0$.)

The Knapsack Problem (cont.)

An example of the table constructed for the knapsack problem:

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	O	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
$k_{1}=2$	O	-	I	-	-	-	-	-	-	-	-	-	-	-	-	-	-
$k_{2}=3$	O	-	O	I	-	I	-	-	-	-	-	-	-	-	-	-	-
$k_{3}=5$	O	-	O	O	-	O	-	I	I	-	I	-	-	-	-	-	-
$k_{4}=6$	O	-	O	O	-	O	I	O	O	I	O	I	-	I	I	-	I

" l ": a solution containing this item has been found. "O": a solution without this item has been found. "-": no solution has yet been found.

The Knapsack Problem (cont.)

Algorithm Knapsack (S, K);
$P[0,0]$.exist := true;
for $k:=1$ to K do
$P[0, k]$.exist $:=$ false;
for $i:=1$ to n do
for $k:=0$ to K do
$P[i, k]$.exist $:=$ false;
if $P[i-1, k]$.exist then
$P[i, k]$.exist $:=$ true;
$P[i, k]$.belong := false
else if $k-S[i] \geq 0$ then
if $P[i-1, k-S[i]]$.exist then
$P[i, k]$.exist $:=$ true;
$P[i, k]$.belong := true

