Algorithms 2018: Searching and Sorting

(Based on [Manber 1989])

Yih-Kuen Tsay
March 27, 2018

1 Binary Search

Searching a Sorted Sequence

Problem 1. Let x1,z5, -+ ,x, be a sequence of real numbers such that x1 < 29 < --- < x,. Given a real
number z, we want to find whether z appears in the sequence, and, if it does, to find an index i such that
Tr;, = Z.

Idea: cut the search space in half by asking only one question.

T(1) = 0(1)
T(n) = T(2) + O(1),n > 2

Time complexity: O(logn) (applying the master theorem with a =1, b =2, k =0, and b* = 1 = a).

Binary Search

function Find (z, Left, Right) : integer;
begin
if Left = Right then
if X[Left] = z then Find := Left
else Find :=0
else
Middle := [LeltRightT,
if z < X[Middle] then
Find := Find(z, Left, Middle — 1)
else
Find := Find(z, Middle, Right)
end

Binary Search (cont.)

Algorithm Binary_Search (X, n, z);
begin

Position := Find(z,1,n);
end

1.1 Cyclically Sorted Sequence
Searching a Cyclically Sorted Sequence

Problem 2. Given a cyclically sorted list, find the position of the minimal element in the list (we assume,

for simplicity, that this position is unique).

e Example 1:

123456 78
[56 70 1 2 3 4]

— The 4th is the minimal element.

e Example 2:
_ 1 2 3 45 6 7 8
[01 2 3 45 6 7]
— The 1st is the minimal element.

e To cut the search space in half, what question should we ask?

/* If X[Middle] < X[Right], then the minimal is in the left half (including X [Middle]; otherwise, it

is in the right half (excluding X[Middle]). */

Cyclic Binary Search

Algorithm Cyclic_Binary Search (X, n);
begin

Position := Cyclic_Find(1,n);
end

function Cyclic_Find (Left, Right) : integer;
begin
if Left = Right then Cyclic_Find := Left
else
Middle := LiLe‘ftJ;RightJ;
if X[Middle] < X[Right] then
Cyclic_Find := Cyclic_Find(Left, Middle)
else
Cyclic_Find := Cyclic_Find(Middle + 1, Right)
end

1.2 “Fixpoints”

“Fixpoints”

Problem 3. Given a sorted sequence of distinct integers a1, as, - - -

index i such that a; = 1.

e Example 1:

[-1 1 2 4 5

— a4 = 4 (there are more ...).

,ay, determine whether there exists an

e Example 2:

8
10]

1 2 3 4
[-1 1 25

— There is no 4 such that a; = i.

5 6 7
6 8 9

e Again, can we cut the search space in half by asking only one question?

/* As the numbers are distinct, they increase or decrease at least as fast as the indices (which always
increase or decrease by one). If X[Middle] < Middle, then the fixpoint (if it exists) must be in the
left half (excluding X [Middle]; otherwise, it must be in the right half (including X [Middle]). */

A Special Binary Search

function Special Find (Left, Right) : integer;
begin
if Left = Right then
if A[Left] = Left then Special_Find := Left
else Special _Find := 0
else
Middle := LiLeﬁ";RwhtJ;
if A[Middle] < Middle then
Special _Find := Special _‘Find(Middle + 1, Right)
else
Special _Find := Special _‘Find(Left, Middle)
end

A Special Binary Search (cont.)

Algorithm Special Binary_Search (A4, n);
begin

Position := Special _Find(1,n);
end

1.3 Stuttering Subsequence

Stuttering Subsequence
Problem 4. Given two sequences A and B, find the mazimal value of i such that B* is a subsequence of A.

o If B = xyzzx, then B? = zxyyzrzzax, B® = zxayyyzzzzzzeae, etc.
e B is a subsequence of A if we can embed B inside A in the same order but with possible holes.

e For example, B? = xzyyzzzzxx is a subsequence of x22yyyyrrz2222ETL.

2 Interpolation Search

Interpolation Search

2! e s & 9:].'__ JRY'C5asi I (SR PR R U S S
12 3 4 5 6 7 8 9 101112131415 1617
i
Figure 6.4 Interpolation search.
Source: [Manber 1989].
Interpolation Search (cont.)
C
E
/R — e F
T
I
|
D |
A et L B
|
|
L M R
LM AD AE BF —. |BF| —
::::::7,SO|LM|: |7 ><|LR|
LR AB AC BC |BC|

Interpolation Search (cont.)

function Int_Find (z, Left, Right) : integer;
begin
if X[Left] = z then Int_Find := Left
else if Left = Right or X[Left] = X[Right] then
Int_Find :=0
else
Neat Guess = [Left + C=5ftisgpisern
if z < X[Next_Guess| then
Int_Find := Int_Find(z, Left, Next_Guess — 1)
else

X[i]

Int_Find := Int_Find(z, Next_Guess, Right)
end

TAT F T z—X[Le Right—Le
/* Next Guess — Left = |LM| = B2l x |[LR| ~ [l Iah_Le0]

Interpolation Search (cont.)

Algorithm Interpolation_Search (X, n, z);
begin
if z < X[1] or z > X|[n] then Position := 0
else Position := Int_Find(z,1,n);

end

3 Sorting

Sorting

Problem 5. Given n numbers x1, x2, -+, Tn, arrange them in increasing order. In other words, find a
sequence of distinct indices 1 <iq,%9, -+ ,ip < n, such that z;; <z, <---<ux;, .

A sorting algorithm is called in-place if no additional work space is used besides the initial array that
holds the elements.

3.1 Using Balanced Search Trees
Using Balanced Search Trees

e Balanced search trees, such as AVL trees, may be used for sorting:

1. Create an empty tree.
2. Insert the numbers one by one to the tree.

3. Traverse the tree and output the numbers.

e What’s the time complexity? Suppose we use an AVL tree.

3.2 Radix Sort
Radix Sort

Algorithm Straight Radix (X, n, k);
begin
put all elements of X in a queue GQ;
for::=1toddo
initialize queue Qli] to be empty
for i := k downto 1 do
while GQ is not empty do
pop z from GQ;
d := the i-th digit of x;
insert x into Q[d];
fort:=1toddo

insert Q[t] into GQ;
for i :=1tondo
pop Xi] from GQ
end

3.3 Merge Sort
Merge Sort

Algorithm Mergesort (X, n);
begin M _Sort(1l,n) end

procedure M _Sort (Left, Right);
begin
if Right — Left =1 then
if X[Left] > X[Right] then swap(X|[Left], X[Right])
else if Left # Right then
Middle := [%(Left + Right)];
M _Sort(Left, Middle — 1);
M _Sort(Middle, Right);

Merge Sort (cont.)

i:= Left; j:= Middle; k :=0;
while (¢ < Middle — 1) and (j < Right) do

k:=k+1;
if X[i] < X[j] then

TEMPIk] .= X[i]; i := +1
else TEMPlk] .= X[j|; j:=7+1;

if j > Right then
for t := 0 to Middle — 1 —i do
X[Right — t] := X[Middle — 1 — t]
fort:=0to k—1do
X[Left +t] :== TEM P][t]
end

Merge Sort (cont.)

3.4
Qui

628 |s|w|o |1 |73+ n 16| 14
Dl@[s[s[w|o[| s 7]s]ulaln 1w 7 |
2|6 (D 09 [1[5 |7 3|34 16 14
OlIONCIIOIAKREAE |5‘i7'3 134 e | 4
25 |6 |8 (D[] 2|1 a5 | 7|3 |3 40|64
2| s |6 |89 |u®@|5‘.7.r3 13| 4 ||‘lm£14
s s |8 DO @ s |7 a2 fa|a]ir]e|u
OEOIEIGI®@[@ @] s 73| n]a|n [16 | 1a
2 s el s|olw|n @] 3 |13 a 0w
vl s]e s |9 fw|iz] 7| sG] 4]0 | 1+
vz s e8| w|[2z@@ @0 4|0 [14
vz s e s e wfizls 7B |[@0) 6|
v 2 slef[s]|ofw|nls|7]uflis]a]n 1@ @
2 s e s o w7 ulis[@0) 00
12 s e 8|9 w02 ®‘® @‘@ (19 | (3) }
BeeEOEOE060e 00 6®

Figure 6.8 An example of mergesort. The first row is in the initial order. Each row il-
lustrates either an exchange operation or a merge. The numbers that are involved in the

current operation are circled.

Source: [Manber 1989].

Quick Sort
ck Sort

Algorithm Quicksort (X, n);
begin

end

Q-Sort(1,n)

procedure Q_Sort (Left, Right);
begin

end

Qui

if Left < Right then
Partition(X, Left, Right);
Q-Sort(Left, Middle — 1);
Q-Sort(Middle + 1, Right)

ck Sort (cont.)

Algorithm Partition (X, Left, Right);
begin

end

pivot := X|[left];
L := Left; R := Right,;
while L < R do

while X[L] < pivot and L < Right do L := L+ 1;
while X[R] > pivot and R > Left do R := R — 1;

if L < R then swap(X[L], X[R)]);
Middle .= R;
swap(X[Left], X[Middle])

Quick Sort (cont.)

12 I 1 15 i 3 13
|

12 |1 15 @ 3 13

7(;%)4-

| 15 7 ‘ 10 13 8 1 16 | 14

9
9
9 1 3

2| a|s |3 |@Q2|@|15|7 w0 13 s 10 16 14
® 9

(-—-)la\ || &
%}
&
wn
w

Figure 6.10 Partition of an array around the pivot 6.

Source: [Manber 1989].

Quick Sort (cont.)

3 13 4 11 16 | 14

10 13 8 11 16 | 14

10 | 13 8 1 16 | 14

10 13 8 11 16 14

10 13 8 1n 16 14

S
®EEE®®

ceeeEeE -] [-[-
CEEREEBEEEE
®

@@E|@|@) |«

ClCClCCCCCONE
OEOEIOEOE] ||~
@QE@E@E®) -

Figure 6.12 An example of quicksort. The first line is the initial input. A new pivot is
selected in each line. The pivots are circled. When a single number appears between
two pivots it is obviously in the right position.

Source: [Manber 1989].

Average-Case Complexity of Quick Sort
o When X[i] is selected (at random) as the pivot,
Tn)=n—1+T(@—1)4+T(n—1), where n > 2.
The average running time will then be

T(n) =n—1+433" (T6G—1)+T(n—1i)
:n—1+%Zz;lT(i_l)'i‘%Z?:lT(n_i)
=n—1+ 130 0T0) + L300 T()
=n—1423"1T()

e Solving this recurrence relation with full history, T'(n) = O(nlogn).

3.5 Heap Sort
Heap Sort

Algorithm Heapsort (A, n);
begin
Build_Heap(A);
for i := n downto 2 do
swap(A[1], A[i));
Rearrange_-Heap(i — 1)
end

Heap Sort (cont.)

procedure Rearrange Heap (k);
begin
parent = 1;
child .= 2;
while child < k —1 do
if A[child] < Alchild + 1] then
child := child + 1;
if A[child] > A[parent] then
swap(Alparent], A[child));
parent := child,
child := 2 * child
else child .=k
end

Heap Sort (cont.)

Figure 6.14 Top down and bottom up heap construction.

Source: [Manber 1989].

Building a Heap Bottom Up

10

10

10

10

10

10

10

10

13

6 2|8 |5
26 |8 |s
26 |8 |s

[

26 8|5
2> 6 | 8 | s
2| 6 (6 |,~il+
@ 15 | (13) 14 |

o]

1205713@4”31

Figure 6.15 An example of building a heap bottom up. The numbers on top are the in-
dices. The circled numbers are those that have been exchanged on that step.

Source: [Manber 1989] (6 and 2 in the first row should be swapped).

A Lower Bound for Sorting

e A lower bound for a particular problem is a proof that no algorithm can solve the problem better.

o We typically define a computation model and consider only those algorithms that fit in the model.

e Decision trees model computations performed by comparison-based algorithms.

4

Theorem 6 (Theorem 6.1). Every decision-tree algorithm for sorting has height Q(nlogn).

Order Statistics

Order Statistics: Minimum and Maximum

Problem 7. Find the maximum and minimum elements in a given sequence.

e The obvious solution requires (n — 1) + (n — 2) (= 2n — 3) comparisons between elements.

e Can we do better? Which comparisons could have been avoided?

Order Statistics: Kth-Smallest

Problem 8. Given a sequence S = x1, z2, -

the kth-smallest element in S.

Order Statistics: Kth-Smallest (cont.)

procedure Select (Left, Right, k);

begin

end

if Left = Right then
Select := Left
else Partition(X, Left, Right);

, T, of elements, and an integer k such that 1 < k <mn, find

let Middle be the output of Partition;
if Middle — Left +1 > k then

Select(Left, Middle, k)
else

Select(Middle + 1, Right, k — (Middle — Left + 1))

10

Order Statistics: Kth-Smallest (cont.)
The nested “if” statement may be simplified:

procedure Select (Left, Right, k);
begin
if Left = Right then
Select :== Left
else Partition(X, Left, Right);
let Middle be the output of Partition;
if Middle > k then
Select(Left, Middle, k)
else
Select(Middle + 1, Right, k)
end

Order Statistics: Kth-Smallest (cont.)

Algorithm Selection (X, n, k);

begin
if (k < 1) or (k> n) then print “error”
else S := Select(1,n, k)

end

5 Finding a Majority
Finding a Majority

Problem 9. Given a sequence of numbers, find the majority in the sequence or determine that none exists.

A number is a magority in a sequence if it occurs more than 7 times in the sequence.

Finding a Majority (cont.)

Algorithm Majority (X,n);
begin
C:=X[1]; M:=1,
for ¢ := 2 ton do
if M =0 then
C:=X[i]; M:=1
else
if C = X[i] then M := M +1
else M .= M —1;

Finding a Majority (cont.)

if M =0 then Majority := —1
else

Count := 0;

for i :=1tondo

11

end

if X[i]| = C then Count := Count + 1;
if Count > n/2 then Majority := C
else Majority := —1

12

