Algorithms 2018: Searching and Sorting

(Based on [Manber 1989])
Yih-Kuen Tsay
March 27, 2018

1 Binary Search

Searching a Sorted Sequence

Problem 1. Let $x_{1}, x_{2}, \cdots, x_{n}$ be a sequence of real numbers such that $x_{1} \leq x_{2} \leq \cdots \leq x_{n}$. Given a real number z, we want to find whether z appears in the sequence, and, if it does, to find an index i such that $x_{i}=z$.

Idea: cut the search space in half by asking only one question.

$$
\left\{\begin{array}{l}
T(1)=O(1) \\
T(n)=T\left(\frac{n}{2}\right)+O(1), n \geq 2
\end{array}\right.
$$

Time complexity: $O(\log n)$ (applying the master theorem with $a=1, b=2, k=0$, and $b^{k}=1=a$).

Binary Search

function Find (z, Left, Right) : integer; begin
if Left $=$ Right then
if $X[$ Left $]=z$ then Find $:=$ Left
else Find $:=0$
else
Middle : $=\left\lceil\frac{\text { Left }+ \text { Right }}{2}\right\rceil$;
if $z<X$ [Middle] then
Find $:=\operatorname{Find}(z$, Left, Middle - 1)
else
Find $:=\operatorname{Find}(z$, Middle, Right $)$
end

Binary Search (cont.)

```
Algorithm Binary_Search (X,n,z);
begin
    Position := Find(z, 1,n);
end
```


1.1 Cyclically Sorted Sequence

Searching a Cyclically Sorted Sequence

Problem 2. Given a cyclically sorted list, find the position of the minimal element in the list (we assume, for simplicity, that this position is unique).

- Example 1:

$$
-\left[\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
& 5 & 6 & 7 & 0 & 1 & 2 & 3
\end{array}\right]
$$

- The 4th is the minimal element.
- Example 2:

$$
\begin{aligned}
& \left.-\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
{[} & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline
\end{array}\right] \\
& - \\
& \text { - The 1st is the minimal element. }
\end{aligned}
$$

- To cut the search space in half, what question should we ask?
/* If $X[$ Middle $]<X[$ Right $]$, then the minimal is in the left half (including $X[$ Middle $]$; otherwise, it is in the right half (excluding $X[$ Middle $]$). */

Cyclic Binary Search

```
Algorithm Cyclic_Binary_Search ( }X,n\mathrm{ );
begin
    Position := Cyclic_Find(1,n);
end
function Cyclic_Find (Left,Right) : integer;
begin
    if Left = Right then Cyclic_Find := Left
    else
        Middle := \\frac{Left+Right }{2}\rfloor;
        if X[Middle }<<<X[Right] then
                Cyclic_Find := Cyclic_Find(Left,Middle)
            else
            Cyclic_Find := Cyclic_Find(Middle + 1,Right)
end
```


1.2 "Fixpoints"

"Fixpoints"

Problem 3. Given a sorted sequence of distinct integers $a_{1}, a_{2}, \cdots, a_{n}$, determine whether there exists an index i such that $a_{i}=i$.

- Example 1:

$$
\begin{aligned}
& \left.-\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\\
-1 & 1 & 2 & 4 & 5 & 6 & 8 & 9
\end{array}\right] \\
& \left.-a_{4}=4 \text { (there are more } \ldots . .\right) .
\end{aligned}
$$

- Example 2:

$$
\begin{aligned}
& \left.-\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
-1 & 1 & 2 & 5 & 6 & 8 & 9 & 10
\end{array}\right] \\
& - \text { There is no } i \text { such that } a_{i}=i
\end{aligned}
$$

- Again, can we cut the search space in half by asking only one question?
/* As the numbers are distinct, they increase or decrease at least as fast as the indices (which always increase or decrease by one). If $X[M i d d l e]<M i d d l e$, then the fixpoint (if it exists) must be in the left half (excluding $X[M i d d l e]$; otherwise, it must be in the right half (including $X[$ Middle $]$). */

A Special Binary Search

function Special_Find (Left, Right) : integer;
begin
if $L e f t=$ Right then
if $A[$ Left $]=$ Left then Special_Find $:=$ Left
else Special_Find $:=0$
else
Middle $:=\left\lfloor\frac{\text { Left }+ \text { Right }}{2}\right\rfloor ;$
if $A[$ Middle $]<$ Middle then
Special_Find $:=$ Special_Find(Middle +1, Right $)$

else

Special_Find $:=$ Special_Find(Left, Middle)
end

A Special Binary Search (cont.)
Algorithm Special_Binary_Search (A, n);
begin
Position $:=$ Special_Find $(1, n) ;$
end

1.3 Stuttering Subsequence

Stuttering Subsequence

Problem 4. Given two sequences A and B, find the maximal value of i such that B^{i} is a subsequence of A.

- If $B=x y z z x$, then $B^{2}=x x y y z z z z x x, B^{3}=x x x y y y z z z z z z x x x$, etc.
- B is a subsequence of A if we can embed B inside A in the same order but with possible holes.
- For example, $B^{2}=x x y y z z z z x x$ is a subsequence of $x x z z y y y y x x z z z z z x x x$.

2 Interpolation Search

Interpolation Search

Figure 6.4 Interpolation search.

Source: [Manber 1989].

Interpolation Search (cont.)

Interpolation Search (cont.)
function Int_Find (z, Left, Right) : integer;
begin
if $X[$ Left $]=z$ then Int_Find $:=$ Left
else if Left $=$ Right or $X[L e f t]=X[$ Right $]$ then
Int_Find $:=0$
else
Next_Guess $:=\left\lceil\right.$ Left $\left.+\frac{(z-X[\text { Left }])(\text { Right-Left })}{X[\text { Right }]-X[\text { Left }]}\right\rceil ;$
if $z<X[$ Next_Guess $]$ then
Int_Find $:=$ Int_Find $(z$, Left, Next_Guess - 1)
else

$$
\text { Int_Find }:=\text { Int_Find }\left(z, N e x t _G u e s s, \text { Right }\right)
$$

end

```
\(/ *\) Next_Guess - Left \(=|\overline{L M}|=\frac{|\overline{B F}|}{|\overline{B C \mid}|} \times|\overline{L R}| \approx\left\lceil\frac{(z-X[\text { Left } \mid)(\text { Right-Left })}{X[\text { Right }]-X[\text { Left }]}\right\rceil * /\)
```

Interpolation Search (cont.)

```
Algorithm Interpolation_Search (X,n,z);
begin
    if z<X[1] or z>X[n] then Position :=0
    else Position := Int_Find(z,1,n);
end
```


3 Sorting

Sorting

Problem 5. Given n numbers $x_{1}, x_{2}, \cdots, x_{n}$, arrange them in increasing order. In other words, find a sequence of distinct indices $1 \leq i_{1}, i_{2}, \cdots, i_{n} \leq n$, such that $x_{i_{1}} \leq x_{i_{2}} \leq \cdots \leq x_{i_{n}}$.

A sorting algorithm is called in-place if no additional work space is used besides the initial array that holds the elements.

3.1 Using Balanced Search Trees

Using Balanced Search Trees

- Balanced search trees, such as AVL trees, may be used for sorting:

1. Create an empty tree.
2. Insert the numbers one by one to the tree.
3. Traverse the tree and output the numbers.

- What's the time complexity? Suppose we use an AVL tree.

3.2 Radix Sort

Radix Sort

```
Algorithm Straight_Radix \((X, n, k)\);
begin
    put all elements of \(X\) in a queue \(G Q\);
    for \(i:=1\) to \(d\) do
        initialize queue \(Q[i]\) to be empty
        for \(i:=k\) downto 1 do
        while \(G Q\) is not empty do
            pop \(x\) from \(G Q\);
            \(d:=\) the \(i\)-th digit of \(x\);
            insert \(x\) into \(Q[d]\);
        for \(t:=1\) to \(d\) do
```

```
    insert Q[t] into GQ;
    for }i:=1\mathrm{ to }n\mathrm{ do
        pop X[i] from GQ
end
```


3.3 Merge Sort

Merge Sort

```
Algorithm Mergesort \((X, n)\);
begin \(M_{-} \operatorname{Sort}(1, n)\) end
procedure M_Sort (Left, Right);
begin
    if Right - Left \(=1\) then
        if \(X[L e f t]>X[R i g h t]\) then \(\operatorname{swap}(X[L e f t], X[R i g h t])\)
    else if Left \(\neq\) Right then
        Middle \(:=\left\lceil\frac{1}{2}(\right.\) Left + Right \(\left.)\right\rceil ;\)
        M_Sort(Left, Middle - 1);
        M_Sort(Middle, Right);
```

Merge Sort (cont.)

```
        i:= Left; j := Middle; k:= 0;
        while ( }i\leq\mathrm{ Middle - 1) and ( j s Right) do
            k:=k+1;
            if X[i]\leqX[j] then
                TEMP[k]:=X[i]; i:= i+1
            else TEMP[k]:=X[j]; j:= j+1;
        if j> Right then
            for }t:=0\mathrm{ to Middle - 1-i do
                    X[Right - t] := X[Middle - 1-t]
        for }t:=0\mathrm{ to }k-1\mathrm{ do
            X[Left + t]:=TEMP[t]
```

end

Merge Sort (cont.)

6	2	8	5	10	9	12	1	15	7	3	13	4	11	16	14
(2)	(6)	8	5	10	9	12	1	15	7	3	13	4	11	16	14
2	6	(5)	(8)	10	9	12	1	15	7	3	13	4	11	16	14
(2)	(5)	(6)	(8)	10	9	12	1	15	7	3	13	4	11	16	14
2	5	6	8	(9)	(10)	12	1	15	7	3	13	4	11	16	14
2	5	6	8	9	10	(1)	(12)	15	7	3	13	4	11	16	14
2	5	6	8	(1)	(2)	(10)	(12)	15	7	3	13	4	1 F	16	14
(1)	(2)	(5)	(6)	(8)	(9)	(10)	(1)	15	7	3	13	4	11	16	14
1	2	5	6	8	9	10	12	(7)	(15)	3	13	4	11	16	14
1	2	5	6	8	9	10	12	7	15	(3)	(13)	4	11	16	14
1	2	5	6	8	9	10	12	(3)	(7)	(13)	(15)	4	11	16	14
1	2	5	6	8	9	10	12	3	7	13	15	(4)	(11)	16	14
1	2	5	6	8	9	10	12	3	7	13	15	4	11	(14)	(16)
1	2	5	6	8	9	10	12	3	7	13	15	(4)	(11)	(14)	(16)
1	2	5	6	8	9	10	12	(3)	(4)	(7)	(11)	(13)	(14)	(15)	(16)
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)

Figure 6.8 An example of mergesort. The first row is in the initial order. Each row illustrates either an exchange operation or a merge. The numbers that are involved in the current operation are circled.

3.4 Quick Sort

Quick Sort

Algorithm Quicksort (X, n);
begin
Q _Sort $(1, n)$
end
procedure Q_Sort (Left, Right);
begin
if Left $<$ Right then
Partition(X,Left, Right);
Q_Sort(Left, Middle - 1);
Q _Sort(Middle +1, Right)
end
Quick Sort (cont.)

```
Algorithm Partition (X,Left, Right);
begin
    pivot := X[left];
    L:= Left; R:= Right;
    while}L<R\mathrm{ do
        while }X[L]\leq\mathrm{ pivot and L}\leq\mathrm{ Right do }L:=L+1
        while X[R]> pivot and R\geqLeft do R:= R-1;
        if }L<R\mathrm{ then swap(X[L],X[R]);
    Middle:= R;
    swap(X[Left],X[Middle])
end
```


Quick Sort (cont.)

6	2	8	5	10	9	12	1	15	7	3	13	4	11	16	14
6	2	4	5	10	9	12	1	15	7	3	13	8	11	16	14
6	2	4	5	3	9	12	1	15	7	10	13	8	11	16	14
6	2	4	5	3	1	12	9	15	7	10	13	8	11	16	14
(1)	2	4	5	3	6	12	9	15	7	10	13	8	11	16	14

Figure 6.10 Partition of an array around the pivot 6 .

Source: [Manber 1989].

Quick Sort (cont.)

6	2	8	5	10	9	12	1	15	7	3	13	4	11	16	14
1	2	4	5	3	6	12	9	15	7	10	13	8	11	16	14
1	2	4	5	3	6	12	9	15	7	10	13	8	11	16	14
1	2	4	5	3	6	12	9	15	7	10	13	8	11	16	14
1	2	3	4	5	6	12	9	15	7	10	13	8	11	16	14
1	2	3	4	5	6	8	9	11	7	10	12	13	15	16	14
1	2	3	4	5	6	7	8	11	9	10	12	13	15	16	14
1	2	3	4	5	6	7	8	10	9	11	12	13	15	16	14
1	2	3	4	5	6	7	8	9	10	11	12	13	15	16	14
1	2	3	4	5	6	7	8	9	10	11	12	13	15	16	14
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16

Figure 6.12 An example of quicksort. The first line is the initial input. A new pivot is selected in each line. The pivots are circled. When a single number appears between two pivots it is obviously in the right position.

Source: [Manber 1989].

Average-Case Complexity of Quick Sort

- When $X[i]$ is selected (at random) as the pivot,

$$
T(n)=n-1+T(i-1)+T(n-i), \text { where } n \geq 2
$$

The average running time will then be

$$
\begin{aligned}
T(n) & =n-1+\frac{1}{n} \sum_{i=1}^{n}(T(i-1)+T(n-i)) \\
& =n-1+\frac{1}{n} \sum_{i=1}^{n} T(i-1)+\frac{1}{n} \sum_{i=1}^{n} T(n-i) \\
& =n-1+\frac{1}{n} \sum_{j=0}^{n-1} T(j)+\frac{1}{n} \sum_{j=0}^{n-1} T(j) \\
& =n-1+\frac{2}{n} \sum_{i=0}^{n-1} T(i)
\end{aligned}
$$

- Solving this recurrence relation with full history, $T(n)=O(n \log n)$.

3.5 Heap Sort

Heap Sort

```
Algorithm Heapsort ( }A,n)\mathrm{ ;
begin
    Build_Heap(A);
    for }i:=n\mathrm{ downto 2 do
        swap(A[1],A[i]);
        Rearrange_Heap(i-1)
end
```

Heap Sort (cont.)
procedure Rearrange_Heap (k);
begin
parent $:=1$;
child $:=2$;
while child $\leq k-1$ do
if $A[$ child $]<A[$ child +1$]$ then
child $:=$ child +1 ;
if $A[$ child $]>A[$ parent $]$ then
$\operatorname{swap}(A[$ parent $], A[$ child $])$;
parent $:=$ child;
child $:=2 *$ child
else child $:=k$
end

Heap Sort (cont.)

Figure 6.14 Top down and bottom up heap construction.

Source: [Manber 1989].

Building a Heap Bottom Up

| 2 3 4 5 6 7 8 9 10 12 13 14
 6 2 8 5 10 9 12 1 15 7 3 13 4
 11 16 14
 2 6 8 5 10 9 12 14 15 7 3 13 4
 11 16 1
 2 6 8 5 10 9 16 14 15 7 3 13 4 11 | 12 | 1 | | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 6 | 8 | 5 | 10 | 13 | 16 | 14 | 15 | 7 | 3 | 9 | 4 | 11 | 12 | 1 |
| 2 | 6 | 8 | 5 | 10 | 13 | 16 | 14 | 15 | 7 | 3 | 9 | 4 | 11 | 12 | 1 |
| 2 | 6 | 8 | 15 | 10 | 13 | 16 | 14 | 5 | 7 | 3 | 9 | 4 | 11 | 12 | 1 |
| 2 | 6 | 16 | 15 | 10 | 13 | 12 | 14 | 5 | 7 | 3 | 9 | 4 | 11 | 8 | 1 |
| 2 | 15 | 16 | 14 | 10 | 13 | 12 | 6 | 5 | 7 | 3 | 9 | 4 | 11 | 8 | 1 |
| 16 | 15 | 13 | 14 | 10 | 9 | 12 | 6 | 5 | 7 | 3 | 2 | 4 | 11 | 8 | 1 |

Figure 6.15 An example of building a heap bottom up. The numbers on top are the indices. The circled numbers are those that have been exchanged on that step.

Source: [Manber 1989] (6 and 2 in the first row should be swapped).

A Lower Bound for Sorting

- A lower bound for a particular problem is a proof that no algorithm can solve the problem better.
- We typically define a computation model and consider only those algorithms that fit in the model.
- Decision trees model computations performed by comparison-based algorithms.

Theorem 6 (Theorem 6.1). Every decision-tree algorithm for sorting has height $\Omega(n \log n)$.

4 Order Statistics

Order Statistics: Minimum and Maximum

Problem 7. Find the maximum and minimum elements in a given sequence.

- The obvious solution requires $(n-1)+(n-2)(=2 n-3)$ comparisons between elements.
- Can we do better? Which comparisons could have been avoided?

Order Statistics: K th-Smallest

Problem 8. Given a sequence $S=x_{1}, x_{2}, \cdots, x_{n}$ of elements, and an integer k such that $1 \leq k \leq n$, find the k th-smallest element in S.

```
Order Statistics: \(K\) th-Smallest (cont.)
procedure Select (Left, Right, k);
begin
    if Left \(=\) Right then
        Select \(:=\) Left
    else Partition(X, Left, Right);
        let Middle be the output of Partition;
        if Middle - Left \(+1 \geq k\) then
            Select(Left, Middle, k)
            else
            Select \((\) Middle +1, Right,\(k-(\) Middle - Left +1\())\)
end
```

Order Statistics: Kth-Smallest (cont.)
The nested "if" statement may be simplified:
procedure Select (Left, Right, k);
begin
if Left $=$ Right then Select $:=$ Left
else Partition($X, L e f t$, Right);
let Middle be the output of Partition;
if Middle $\geq k$ then
Select(Left, Middle, k)
else
Select(Middle +1, Right,$k)$
end

Order Statistics: Kth-Smallest (cont.)
Algorithm Selection (X, n, k);
begin
if $(k<1)$ or $(k>n)$ then print "error"
else $S:=\operatorname{Select}(1, n, k)$
end

5 Finding a Majority

Finding a Majority

Problem 9. Given a sequence of numbers, find the majority in the sequence or determine that none exists.

A number is a majority in a sequence if it occurs more than $\frac{n}{2}$ times in the sequence.
Finding a Majority (cont.)

```
Algorithm Majority \((X, n)\);
begin
    \(C:=X[1] ; \quad M:=1 ;\)
    for \(i:=2\) to \(n\) do
        if \(M=0\) then
            \(C:=X[i] ; \quad M:=1\)
        else
            if \(C=X[i]\) then \(M:=M+1\)
            else \(M:=M-1\);
```


Finding a Majority (cont.)

if $M=0$ then Majority $:=-1$
else
Count :=0;
for $i:=1$ to n do

[^0]
[^0]: if $X[i]=C$ then Count $:=$ Count +1 ; if Count $>n / 2$ then Majority $:=C$
 else Majority $:=-1$
 end

