
Algorithms 2018: Searching and Sorting

(Based on [Manber 1989])

Yih-Kuen Tsay

April 10, 2018

1 Binary Search

Searching a Sorted Sequence

Problem 1. Let x1, x2, · · · , xn be a sequence of real numbers such that x1 ≤ x2 ≤ · · · ≤ xn. Given a real
number z, we want to find whether z appears in the sequence, and, if it does, to find an index i such that
xi = z.

Idea: cut the search space in half by asking only one question.{
T (1) = O(1)

T (n) = T (n
2
) +O(1), n ≥ 2

Time complexity: O(log n) (applying the master theorem with a = 1, b = 2, k = 0, and bk = 1 = a).

Binary Search

function Find (z, Left, Right) : integer;
begin

if Left = Right then
if X[Left] = z then Find := Left
else Find := 0

else

Middle := dLeft+Right
2 e;

if z < X[Middle] then
Find := Find(z, Left,Middle− 1)

else
Find := Find(z,Middle,Right)

end

Binary Search (cont.)

Algorithm Binary Search (X,n, z);
begin

Position := Find(z, 1, n);
end

1

1.1 Cyclically Sorted Sequence

Searching a Cyclically Sorted Sequence

Problem 2. Given a cyclically sorted list, find the position of the minimal element in the list (we assume,
for simplicity, that this position is unique).

• Example 1:

–
1 2 3 4 5 6 7 8

[5 6 7 0 1 2 3 4]

– The 4th is the minimal element.

• Example 2:

–
1 2 3 4 5 6 7 8

[0 1 2 3 4 5 6 7]

– The 1st is the minimal element.

• To cut the search space in half, what question should we ask?

/* If X[Middle] < X[Right], then the minimal is in the left half (including X[Middle]; otherwise, it
is in the right half (excluding X[Middle]). */

Cyclic Binary Search

Algorithm Cyclic Binary Search (X,n);
begin

Position := Cyclic F ind(1, n);
end

function Cyclic Find (Left,Right) : integer;
begin

if Left = Right then Cyclic F ind := Left
else

Middle := bLeft+Right
2 c;

if X[Middle] < X[Right] then
Cyclic F ind := Cyclic F ind(Left,Middle)

else
Cyclic F ind := Cyclic F ind(Middle+ 1, Right)

end

1.2 “Fixpoints”

“Fixpoints”

Problem 3. Given a sorted sequence of distinct integers a1, a2, · · · , an, determine whether there exists an
index i such that ai = i.

• Example 1:

–
1 2 3 4 5 6 7 8

[−1 1 2 4 5 6 8 9]

– a4 = 4 (there are more ...).

2

• Example 2:

–
1 2 3 4 5 6 7 8

[−1 1 2 5 6 8 9 10]

– There is no i such that ai = i.

• Again, can we cut the search space in half by asking only one question?

/* As the numbers are distinct, they increase or decrease at least as fast as the indices (which always
increase or decrease by one). If X[Middle] < Middle, then the fixpoint (if it exists) must be in the
left half (excluding X[Middle]; otherwise, it must be in the right half (including X[Middle]). */

A Special Binary Search

function Special Find (Left,Right) : integer;
begin

if Left = Right then
if A[Left] = Left then Special F ind := Left
else Special F ind := 0

else

Middle := bLeft+Right
2 c;

if A[Middle] < Middle then
Special F ind := Special F ind(Middle+ 1, Right)

else
Special F ind := Special F ind(Left,Middle)

end

A Special Binary Search (cont.)

Algorithm Special Binary Search (A,n);
begin

Position := Special F ind(1, n);
end

1.3 Stuttering Subsequence

Stuttering Subsequence

Problem 4. Given two sequences A (= a1a2 · · · an) and B (= b1b2 · · · bm), find the maximal value of i such
that Bi is a subsequence of A.

• If B = xyzzx, then B2 = xxyyzzzzxx, B3 = xxxyyyzzzzzzxxx, etc.

• B is a subsequence of A if we can embed B inside A in the same order but with possible holes.

• For example, B2 = xxyyzzzzxx is a subsequence of xxzzyyyyxxzzzzzxxx.

• If Bj is a subsequence of A, then Bi is a subsequence of A, for 1 ≤ i ≤ j.

• The maximum value of i cannot exceed b nmc (or Bi would be longer than A).

3

Stuttering Subsequence (cont.)
Two ways to find the maximum i:

• Sequential search: try 1, 2, 3, etc. sequentially.

Time complexity: O(nj), where j is the maximum value of i.

• Binary search between 1 and b nmc.
Time complexity: O(n log n

m).

Can binary search be applied, if the bound b nmc is unknown?

Think of the base case in a reversed induction.

/* Try 20, 21, 22, · · · , 2k−1, and 2k sequentially. If the target falls between 2k−1 and 2k, apply binary search
within that region. */

2 Interpolation Search

Interpolation Search

Source: [Manber 1989].

Interpolation Search (cont.)

z

A

L RM

C

F
E

B
D

4

LM

LR
=
AD

AB
=
AE

AC
=
BF

BC
, so |LM | = |BF |

|BC|
× |LR|

Interpolation Search (cont.)

function Int Find (z, Left, Right) : integer;
begin

if X[Left] = z then Int F ind := Left
else if Left = Right or X[Left] = X[Right] then

Int F ind := 0
else

Next Guess := dLeft+ (z−X[Left])(Right−Left)
X[Right]−X[Left] e;

if z < X[Next Guess] then
Int F ind := Int F ind(z, Left,Next Guess− 1)

else
Int F ind := Int F ind(z,Next Guess,Right)

end

/* Next Guess− Left = |LM | = |BF |
|BC| × |LR| ≈ d

(z−X[Left])(Right−Left)
X[Right]−X[Left] e */

Interpolation Search (cont.)

Algorithm Interpolation Search (X,n, z);
begin

if z < X[1] or z > X[n] then Position := 0
else Position := Int F ind(z, 1, n);

end

3 Sorting

Sorting

Problem 5. Given n numbers x1, x2, · · · , xn, arrange them in increasing order. In other words, find a
sequence of distinct indices 1 ≤ i1, i2, · · · , in ≤ n, such that xi1 ≤ xi2 ≤ · · · ≤ xin .

A sorting algorithm is called in-place if no additional work space is used besides the initial array that
holds the elements.

3.1 Using Balanced Search Trees

Using Balanced Search Trees

• Balanced search trees, such as AVL trees, may be used for sorting:

1. Create an empty tree.

2. Insert the numbers one by one to the tree.

3. Traverse the tree and output the numbers.

• What’s the time complexity? Suppose we use an AVL tree.

5

3.2 Radix Sort

Radix Sort

Algorithm Straight Radix (X,n, k);
begin

put all elements of X in a queue GQ;
for i := 1 to d do

initialize queue Q[i] to be empty
for i := k downto 1 do

while GQ is not empty do
pop x from GQ;
d := the i-th digit of x;
insert x into Q[d];

for t := 1 to d do
insert Q[t] into GQ;

for i := 1 to n do
pop X[i] from GQ

end

Time complexity: O(nk).

3.3 Merge Sort

Merge Sort

Algorithm Mergesort (X,n);
begin M Sort(1, n) end

procedure M Sort (Left,Right);
begin

if Right− Left = 1 then
if X[Left] > X[Right] then swap(X[Left], X[Right])

else if Left 6= Right then
Middle := d 1

2 (Left+Right)e;
M Sort(Left,Middle− 1);
M Sort(Middle,Right);

Merge Sort (cont.)

i := Left; j := Middle; k := 0;
while (i ≤Middle− 1) and (j ≤ Right) do

k := k + 1;
if X[i] ≤ X[j] then
TEMP [k] := X[i]; i := i+ 1

else TEMP [k] := X[j]; j := j + 1;
if j > Right then

for t := 0 to Middle− 1− i do
X[Right− t] := X[Middle− 1− t]

for t := 0 to k − 1 do
X[Left+ t] := TEMP [t]

end

Time complexity: O(n log n).

6

Merge Sort (cont.)

Source: [Manber 1989].

3.4 Quick Sort

Quick Sort

Algorithm Quicksort (X,n);
begin

Q Sort(1, n)
end

procedure Q Sort (Left,Right);
begin

if Left < Right then
Partition(X,Left,Right);
Q Sort(Left,Middle− 1);
Q Sort(Middle+ 1, Right)

end

Time complexity: O(n2), but O(n log n) in average

Quick Sort (cont.)

Algorithm Partition (X,Left,Right);
begin

pivot := X[left];
L := Left; R := Right;
while L < R do

while X[L] ≤ pivot and L ≤ Right do L := L+ 1;
while X[R] > pivot and R ≥ Left do R := R− 1;
if L < R then swap(X[L], X[R]);

Middle := R;
swap(X[Left], X[Middle])

end

7

Quick Sort (cont.)

Source: [Manber 1989].

Quick Sort (cont.)

Source: [Manber 1989].

Average-Case Complexity of Quick Sort

• When X[i] is selected (at random) as the pivot,

T (n) = n− 1 + T (i− 1) + T (n− i), where n ≥ 2.

The average running time will then be

T (n) = n− 1 + 1
n

∑n
i=1(T (i− 1) + T (n− i))

= n− 1 + 1
n

∑n
i=1 T (i− 1) + 1

n

∑n
i=1 T (n− i)

= n− 1 + 1
n

∑n−1
j=0 T (j) + 1

n

∑n−1
j=0 T (j)

= n− 1 + 2
n

∑n−1
i=0 T (i)

• Solving this recurrence relation with full history, T (n) = O(n log n).

8

3.5 Heap Sort

Heap Sort

Algorithm Heapsort (A,n);
begin

Build Heap(A);
for i := n downto 2 do

swap(A[1], A[i]);
Rearrange Heap(i− 1)

end

Time complexity: O(n log n)

Heap Sort (cont.)

procedure Rearrange Heap (k);
begin

parent := 1;
child := 2;
while child ≤ k − 1 do

if A[child] < A[child+ 1] then
child := child+ 1;

if A[child] > A[parent] then
swap(A[parent], A[child]);
parent := child;
child := 2 ∗ child

else child := k
end

Heap Sort (cont.)

Source: [Manber 1989].

How do the two approaches compare?

/* Top down: O(n log n).
Bottom up: O(sum of the heights of all nodes) = O(n). Consider a full binary tree of height h. From an

excercise problem in HW#2, we know that “sum of the heights of all nodes” of the tree equals 2h+1−(h+2) ≤
2h+1 − 1 = n. */

9

Building a Heap Bottom Up

Source: [Manber 1989] (6 and 2 in the first row should be swapped).

A Lower Bound for Sorting

• A lower bound for a particular problem is a proof that no algorithm can solve the problem better.

• We typically define a computation model and consider only those algorithms that fit in the model.

• Decision trees model computations performed by comparison-based algorithms.

Theorem 6 (Theorem 6.1). Every decision-tree algorithm for sorting has height Ω(n log n).

Proof idea: there must be at least n! leaves, one for each possible outcome.

/* Recall Stirling’s approximation: n! =
√

2πn
(
n
e

)n
(1 + O(1/n)). The height of the decision tree must be

at least log(n!), i.e., Ω(n log n). */

Is the lower bound contradictory to the time complexity of radix sort?

4 Order Statistics

Order Statistics: Minimum and Maximum

Problem 7. Find the maximum and minimum elements in a given sequence.

• The obvious solution requires (n− 1) + (n− 2) (= 2n− 3) comparisons between elements.

• Can we do better? Which comparisons could have been avoided?

Order Statistics: Kth-Smallest

Problem 8. Given a sequence S = x1, x2, · · · , xn of elements, and an integer k such that 1 ≤ k ≤ n, find
the kth-smallest element in S.

10

Order Statistics: Kth-Smallest (cont.)

procedure Select (Left,Right, k);
begin

if Left = Right then
Select := Left

else Partition(X,Left,Right);
let Middle be the output of Partition;
if Middle− Left+ 1 ≥ k then
Select(Left,Middle, k)

else
Select(Middle+ 1, Right, k − (Middle− Left+ 1))

end

Order Statistics: Kth-Smallest (cont.)
The nested “if” statement may be simplified:

procedure Select (Left,Right, k);
begin

if Left = Right then
Select := Left

else Partition(X,Left,Right);
let Middle be the output of Partition;
if Middle ≥ k then
Select(Left,Middle, k)

else
Select(Middle+ 1, Right, k)

end

Order Statistics: Kth-Smallest (cont.)

Algorithm Selection (X,n, k);
begin

if (k < 1) or (k > n) then print “error”
else S := Select(1, n, k)

end

5 Finding a Majority

Finding a Majority

Problem 9. Given a sequence of numbers, find the majority in the sequence or determine that none exists.

A number is a majority in a sequence if it occurs more than n
2 times in the sequence.

Idea: compare any two numbers in the sequence. What can we conclude if they are not equal?

/* If there is a majority, it is also a majority of the other n− 2 numbers. */

What if they are equal?

11

Finding a Majority (cont.)

Algorithm Majority (X,n);
begin

C := X[1]; M := 1;
for i := 2 to n do

if M = 0 then
C := X[i]; M := 1

else
if C = X[i] then M := M + 1
else M := M − 1;

Finding a Majority (cont.)

if M = 0 then Majority := −1
else

Count := 0;
for i := 1 to n do

if X[i] = C then Count := Count+ 1;
if Count > n/2 then Majority := C
else Majority := −1

end

12

