
Algorithms 2019: String Processing

(Based on [Manber 1989])

Yih-Kuen Tsay

October 29, 2019

1 Data Compression

Data Compression

Problem 1. Given a text (a sequence of characters), find an encoding for the characters that satisfies the
prefix constraint and that minimizes the total number of bits needed to encode the text.

The prefix constraint states that the prefixes of an encoding of one character must not be equal to a
complete encoding of another character.

Denote the characters by c1, c2, · · · , cn and their frequencies by f1, f2, · · · , fn. Given an encoding E in
which a bit string si represents ci, the length (number of bits) of the text encoded by using E is

∑n
i=1 |si| ·fi.

A Code Tree

0

00

01

010 011

1

Figure: The tree representation of encoding.
Source: redrawn from [Manber 1989, Figure 6.17].

A Huffman Tree

1

5

E

4

2

1

F B

C

3

D A

Figure: The Huffman tree for a text with frequencies of A: 5, B: 2, C: 3, D: 4, E: 10, F:1.
Source: redrawn from [Manber 1989, Figure 6.19].

Huffman Encoding

Algorithm Huffman Encoding (S, f);
insert all characters into a heap H

according to their frequencies;
while H not empty do

if H contains only one character X then
make X the root of T

else
delete X and Y with lowest frequencies;

from H;
create Z with a frequency equal to the

sum of the frequencies of X and Y ;
insert Z into H;
make X and Y children of Z in T

What is its time complexity? O(n log n)

/* The while loop requires n iterations, as the heap H initially contains n elements and each iteration reduces
its size by one (removing two elements and adding one new element). Each iteration takes O(log n) time. */

2 String Matching

String Matching

Problem 2. Given two strings A (= a1a2 · · · an) and B (= b1b2 · · · bm), find the first occurrence (if any) of
B in A. In other words, find the smallest k such that, for all i, 1 ≤ i ≤ m, we have ak−1+i = bi.

A (non-empty) substring of a string A is a consecutive sequence of characters aiai+1 · · · aj (i ≤ j) from
A.

2

Straightforward String Matching

A = xyxxyxyxyyxyxyxyyxyxyxx. B = xyxyyxyxyxx.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
x y x x y x y x y y x y x y x y y x y x y x x

1 : x y x y · · ·
2 : x · · ·
3 : x y · · ·
4 : x y x y y · · ·
5 : x · · ·
6 : x y x y y x y x y x x
7 : x · · ·
8 : x y x · · ·
9 : x · · ·
10 : x · · ·
11 : x y x y y · · ·
12 : x · · ·
13 : x y x y y x y x y x x

Figure: An example of a straightforward string matching.
Source: redrawn from [Manber 1989, Figure 6.20].

Straightforward String Matching (cont.)

• What is the time complexity?

– B (= b1b2 · · · bm) may be compared against

∗ a1a2 · · · am,

∗ a2a3 · · · am+1,

∗ . . ., and

∗ an−m+1an−m+2 · · · an
– For example, A = xxxx . . . xxxy and B = xxxy.

• So, the time complexity is O(m× n).

• We will exam the cause of defficiency.

• We then study an efficient algorithm, which is linear-time with a preprocessing stage.

Matching Against Itself

B = x y x y y x y x y x x
x · · ·

x y x · · ·
x · · ·

x · · ·
x y x y y

x · · ·
x y x

Figure: Matching the pattern against itself.
Source: redrawn from [Manber 1989, Figure 6.21].

3

The Values of next

i = 1 2 3 4 5 6 7 8 9 10 11
B = x y x y y x y x y x x
next = −1 0 0 1 2 0 1 2 3 4 3

Figure: The values of next .
Source: redrawn from [Manber 1989, Figure 6.22].

The value of next [j] tells the length of the longest proper prefix that is equal to a suffix of b1b2 . . . bj−1.

next [1] is set to −1 so that this unique case is easily differentiated (see the main loop of the KMP
algorithm).

The KMP Algorithm

Algorithm String Match (A,n,B,m);
begin

j := 1; i := 1;
Start := 0;
while Start = 0 and i ≤ n do

if B[j] = A[i] then
j := j + 1; i := i + 1

else
j := next[j] + 1;
if j = 0 then

j := 1; i := i + 1;
if j = m + 1 then Start := i−m

end

The KMP Algorithm (cont.)

next(j)+1
j=
next(i-1)+1 i-1 i

Figure: Computing next(i).
Source: redrawn from [Manber 1989, Figure 6.24].

The KMP Algorithm (cont.)

Algorithm Compute Next (B,m);
begin

next[1] := −1; next[2] := 0;
for i := 3 to m do

j := next[i− 1] + 1;
while B[i− 1] 6= B[j] and j > 0 do

j := next[j] + 1;
next[i] := j

end

4

The KMP Algorithm (cont.)

• What is its time complexity?

– Because of backtracking, ai may be compared against

∗ bj ,

∗ bj−1,

∗ . . ., and

∗ b2

– However, for these to happen, each of ai−j+2, ai−j+3, . . . , ai−1 was compared against the corre-
sponding character in b1b2 . . . bj−1 just once.

– We may re-assign the costs of comparing ai against bj−1, bj−2, . . . , b2 to those of comparing
ai−j+2ai−j+3 . . . ai−1 against b1b2 . . . bj−1.

• Every ai is incurred the cost of at most two comparisons.

• So, the time complexity is O(n).

3 String Editing

String Editing

Problem 3. Given two strings A (= a1a2 · · · an) and B (= b1b2 · · · bm), find the minimum number of
changes required to change A character by character such that it becomes equal to B.

Three types of changes (or edit steps) allowed: (1) insert, (2) delete, and (3) replace.

String Editing (cont.)
Let C(i, j) denote the minimum cost of changing A(i) to B(j), where A(i) = a1a2 · · · ai and B(j) =

b1b2 · · · bj .

C(i, j) = min


C(i− 1, j) + 1 (deleting ai)
C(i, j − 1) + 1 (inserting bj)
C(i− 1, j − 1) + 1 (ai → bj)
C(i− 1, j − 1) (ai = bj)

String Editing (cont.)

j

i C(i, j)

Figure: The dependencies of C(i, j).
Source: redrawn from [Manber 1989, Figure 6.26].

5

String Editing (cont.)

Algorithm Minimum Edit Distance (A,n,B,m);
for i := 0 to n do C[i, 0] := i;
for j := 1 to m do C[0, j] := j;
for i := 1 to n do

for j := 1 to m do
x := C[i− 1, j] + 1;
y := C[i, j − 1] + 1;
if ai = bj then

z := C[i− 1, j − 1]
else

z := C[i− 1, j − 1] + 1;
C[i, j] := min(x, y, z)

Its time complexity is clearly O(mn).

6

