Advanced Graph Algorithms (Based on [Manber 1989])

Yih-Kuen Tsay

Department of Information Management
National Taiwan University

Strongly Connected Components

A directed graph is strongly connected if there is a directed path from every vertex to every other vertex.

Strongly Connected Components

A directed graph is strongly connected if there is a directed path from every vertex to every other vertex.

- A strongly connected component (SCC) is a maximal subset of the vertices such that its induced subgraph is strongly connected (namely, there is no other subset that contains it and induces a strongly connected graph).

Strongly Connected Components (cont.)

Figure: A directed graph and its strongly connected component graph.
Source: redrawn from [Manber 1989, Figure 7.30].

Strongly Connected Components (cont.)

Lemma (7.11)

Two distinct vertices belong to the same SCC if and only if there is a circuit containing both of them.

Strongly Connected Components (cont.)

Lemma (7.11)

Two distinct vertices belong to the same SCC if and only if there is a circuit containing both of them.

Lemma (7.12)
Each vertex belongs to exactly one SCC.

Strongly Connected Components (cont.)

Figure: Adding an edge connecting two different strongly connected components.

Source: redrawn from [Manber 1989, Figure 7.31].

Strongly Connected Components (cont.)

Figure: The effect of cross edges.
Source: redrawn from [Manber 1989, Figure 7.32].

Strongly Connected Components (cont.)

Algorithm Strongly_Connected_Components(G, n); begin
for every vertex v of G do v. DFS_Number $:=0$;
v.Component $:=0$;

Current_Component :=0; DFS_N := n; while v.DFS_Number $=0$ for some v do SCC(v)
end
procedure $\operatorname{SCC}(v)$; begin
v.DFS_Number := DFS_N;

DFS_N := DFS_N - 1;
insert v into Stack;
v.High $:=$ v.DFS_Number;

Strongly Connected Components (cont.)

for all edges (v, w) do
if w.DFS_Number $=0$ then SCC(w);
v.High := max(v.High, w.High)
else if w.DFS_Number $>v$.DFS_Number and w.Component $=0$ then
v.High := max(v.High, w.DFS_Number)
// max(v.High, w.High) also works
if v.High $=v$. DFS_Number then
Current_Component :=Current_Component +1 ;
repeat
remove x from the top of Stack;
x. component $:=$ Current_Component
until $x=v$
end

Strongly Connected Components (cont.)

for all edges (v, w) do
if w.DFS_Number $=0$ then SCC(w);
v.High := max(v.High, w.High)
else if w.DFS_Number $>v$.DFS_Number and w.Component $=0$ then
v.High := max(v.High, w.DFS_Number)
// max(v.High, w.High) also works
if v.High $=v$. DFS_Number then
Current_Component := Current_Component +1 ;
repeat
remove x from the top of Stack;
x.component $:=$ Current_Component
until $x=v$
end
Time complexity:

Strongly Connected Components (cont.)

for all edges (v, w) do
if w.DFS_Number $=0$ then SCC(w);
v.High := max(v.High, w.High)
else if w.DFS_Number $>v$.DFS_Number and w.Component $=0$ then
v.High := max(v.High, w.DFS_Number)
// max(v.High, w.High) also works
if v.High $=v$. DFS_Number then
Current_Component := Current_Component +1 ;
repeat
remove x from the top of Stack;
x.component $:=$ Current_Component
until $x=v$
end
Time complexity: $O(|E|+|V|)$.

Strongly Connected Components (cont.)

	a	b	c	d	e	f	g	h	i	j	k
	11	10	9	8	7	6	5	4	3	2	1
a	11	-	-	-	-	-	-	-	-	-	-
b	11	10	-	-	-	-	-	-	-	-	-
c	11	10	9	-	-	-	-	-	-	-	-
d	11	10	9	8	-	-	-	-	-	-	-
e	11	10	9	8	10	-	-	-	-	-	-
d	11	10	9	10	10	-	-	-	-	-	-
c	11	10	10	10	10	-	-	-	-	-	-
f	11	10	10	10	10	6	-	-	-	-	-
g	11	10	10	10	10	6	7	-	-	-	-
f	11	10	10	10	10	7	7	-	-	-	-
c	11	10	10	10	10	7	7	-	-	-	-
bb	11	10	10	10	10	7	7	-	-	-	-
a	11	10	10	10	10	7	7	-	-	-	-
h	11	10	10	10	10	7	7	4	-	-	-
i	11	10	10	10	10	7	7	4	3	-	-
j	11	10	10	10	10	7	7	4	3	11	-
i	11	10	10	10	10	7	7	4	11	11	-
(k)	11	10	10	10	10	7	7	4	11	11	1
i	11	10	10	10	10	7	7	4	11	11	1
h	11	10	10	10	10	7	7	11	11	11	1
a	11	10	10	10	10	7	7	11	11	11	1

Figure: An example of computing High values and strongly connected components.

Source: redrawn from [Manber 1989, Figure 7.34].

Odd-Length Cycles

Problem

Given a directed graph $G=(V, E)$, determine whether it contains a (directed) cycle of odd length.

Odd-Length Cycles

Problem

Given a directed graph $G=(V, E)$, determine whether it contains a (directed) cycle of odd length.

- A cycle must reside completely within a strongly connected component (SCC), so we exam each SCC separately.
Mark the nodes of an SCC with "even" or "odd" using DFS.
- If we have to mark a node that is already marked in the opposite, then we have found an odd-length cycle.

Biconnected Components

An undirected graph is biconnected if there are at least two vertex-disjoint paths from every vertex to every other vertex.

Biconnected Components

- An undirected graph is biconnected if there are at least two vertex-disjoint paths from every vertex to every other vertex. A graph is not biconnected if and only if there is a vertex whose removal disconnects the graph. Such a vertex is called an articulation point.

Biconnected Components

- An undirected graph is biconnected if there are at least two vertex-disjoint paths from every vertex to every other vertex.
- A graph is not biconnected if and only if there is a vertex whose removal disconnects the graph. Such a vertex is called an articulation point.
A biconnected component (BCC) is a maximal subset of the edges such that its induced subgraph is biconnected (namely, there is no other subset that contains it and induces a biconnected graph).

Biconnected Components (cont.)

Figure: The structure of a nonbiconnected graph.
Source: redrawn from [Manber 1989, Figure 7.25].

Biconnected Components (cont.)

Lemma (7.9)

Two distinct edges e and f belong to the same BCC if and only if there is a cycle containing both of them.

Biconnected Components (cont.)

Lemma (7.9)

Two distinct edges e and f belong to the same BCC if and only if there is a cycle containing both of them.

Lemma (7.10)

Each edge belongs to exactly one BCC.

Biconnected Components (cont.)

(a)

(b)

Figure: An edge that connects two different biconnected components. (a) The components corresponding to the graph of Figure 7.25 with the articulation points indicated. (b) The biconnected component tree.
Source: redrawn from [Manber 1989, Figure 7.26].

Biconnected Components (cont.)

Figure: Computing the High values.
Source: redrawn from [Manber 1989, Figure 7.27].

Biconnected Components (cont.)

Algorithm Biconnected_Components (G, v, n); begin
for every vertex w do w.DFS_Number := 0 ; DFS_N := n; $B C(v)$
end
procedure $\mathrm{BC}(\mathrm{v})$;
begin
v.DFS_Number := DFS_N;

DFS_N := DFS_N - 1;
insert v into Stack;
v.High $:=$ v.DFS_Number;

Biconnected Components (cont.)

for all edges (v, w) do insert (v, w) into Stack;
if w is not the parent of v then
if $w . D F S _$Number $=0$ then
$B C(w)$;
if w.High $\leq v$.DFS_Number then remove all edges and vertices from Stack until v is reached; insert v back into Stack; v.High $:=\max (v$. High, w.High)
else
v. High $:=\max (v$. High, w.DFS_Number)
// max(v.High, w.High) would not work, unlike in SCC
end

Biconnected Components (cont.)

 procedure $\mathrm{BC}(v)$; beginv.DFS_Number := DFS_N;

DFS_N := DFS_N - 1;
v.High $:=$ v.DFS_Number;
for all edges (v, w) do
if w is not the parent of v then insert (v, w) into Stack; if w. DFS_Number $=0$ then $B C(w)$;
if $w . h i g h \leq v$.DFS_Number then remove all edges from Stack until (v, w) is reached; v. High $:=\max (v$. High, w.High $)$
else

$$
\text { v.High }:=\max (v . \text { High, w.DFS_Number })
$$

Biconnected Components (cont.)

a	16																
b	16	15	-		-	-					-	-	-				
c	16	15	14	-	-						-	-	-		-		
d	16	15	14	13	,		-	-			-	-		-			
	16	15	14	13	15	-	-	-			-	-	-	-	-	-	
d	16	15	14	15	15	.	-	-			-	-	-	-	-	-	
f	16	15	14	15	15	14	4 -	-									
d	16	15	14	15	15	14	4	-				-	-				
c	16	15	15	15	15	14	4 -	-		-	-	-	-				
g	16	15		15	15			-									
	16	15	15	15	15	14	415	-									
(b)	16	15	15	15	15		415	.		-	-	-		-			
	16	15	15	15	15		415	16			-						
i	16	15	15	15	15	14	14	16	68	8 -	-	-	-				
j	16	15		15	15	14	415	16			7						
k	16	15	15	15	15	14	415	16	68	8	7	8	-	-			
j	16	15	15	15	15	14	415	16	68	8	8	8	-				
।	16	15		15	15	14	415	5	68	88	8	8					
	16	15		15	15	14	415	16	68			8	8				
(1)	16	15		15	15	14	415	16				8	8				
(b)	16	15	15	15	15	14	415	16	68	8	8	8	8				
b	16	16	15	15	15	14	415	16	18	8	8	8	8				
(a)	16	16	15	15	15	14	415	16		88	8	8	8				
m	16	16		15	15	14	14	16	68	8	8	8	8	4			
n	16	16	15	15	15	14	415	16	68	88	8	8	8	4	16		
	16	16						16				8	8	4			
(${ }^{\text {a }}$		16															
p	16	16	15	15	15	14	415	16	6	88	8	8	8	4	16	2	16
								16				8	8	4	16		
		16	15	15	15	14	415	16	68	88	8	8	8	16	616		

Figure: An example of computing the High values and biconnected components. Source: redrawn from [Manber 1989, Figure 7.29].

Even-Length Cycles

Problem

Given a connected undirected graph $G=(V, E)$, determine whether it contains a cycle of even length.

Even-Length Cycles

Problem

Given a connected undirected graph $G=(V, E)$, determine whether it contains a cycle of even length.

Theorem

Every biconnected graph that has more than one edge and is not merely an odd-length cycle contains an even-length cycle.

Even-Length Cycles (cont.)

Figure: Finding an even-length cycle.
Source: redrawn from [Manber 1989, Figure 7.35].

Network Flows

Consider a directed graph, or network, $G=(V, E)$ with two distinguished vertices: s (the source) with indegree 0 and t (the sink) with outdegree 0 .
Each edge e in E has an associated positive weight $c(e)$, called the capacity of e.

Network Flows (cont.)

A flow is a function f on E that satisfies the following two conditions:

$$
\begin{aligned}
& \text { 1. } 0 \leq f(e) \leq c(e) . \\
& \text { 2. } \sum_{u} f(u, v)=\sum_{w} f(v, w) \text {, for all } v \in V-\{s, t\} \text {. }
\end{aligned}
$$

The network flow problem is to maximize the flow f for a given network G.

Network Flows (cont.)

Figure: Reducing bipartite matching to network flow (the directions of all the edges are from left to right).
Source: redrawn from [Manber 1989, Figure 7.39].

Augmenting Paths

- An augmenting path w.r.t. a given flow f (of a network G) is a directed path from s to t consisting of edges from G, but not necessarily in the same diretion; each of these edges (v, u) satisfies exactly one of:

1. (v, u) is in the same direction as it is in G, and $f(v, u)<c(v, u)$. (forward edge)
2. (v, u) is in the opposite direction in G (namely, $(u, v) \in E)$, and $f(u, v)>0$. (backward edge)
If there exists an augmenting path w.r.t. a flow $f(f$ admits an augmenting path), then f is not maximum.

Augmenting Paths (cont.)

Figure: An example of a network with a (nonmaximum) flow. Source: redrawn from [Manber 1989, Figure 7.40].

Augmenting Paths (cont.)

Figure: The result of augmenting the flow of Figure 7.40. Source: redrawn from [Manber 1989, Figure 7.41].

Properties of Network Flows

Theorem (Augmenting-Path)

A flow f is maximum if and only if it admits no augmenting path.
A cut is a set of edges that separate s from t, or more precisely a set of the form $\{(v, w) \in E \mid v \in A$ and $w \in B\}$, where $B=V-A$ such that $s \in A$ and $t \in B$.

Theorem (Max-Flow Min-Cut)

The value of a maximum flow in a network is equal to the minimum capacity of a cut.

Properties of Network Flows (cont.)

Theorem (Integral-Flow)
If the capacities of all edges in the network are integers, then there is a maximum flow whose value is an integer.

Residual Graphs

The residual graph with respect to a network $G=(V, E)$ and a flow f is the network $R=(V, F)$, where F consists of all forward and backward edges and their capacities are given as follows:

$$
\begin{aligned}
& \text { 1. } c_{R}(v, w)=c(v, w)-f(v, w) \text { if }(v, w) \text { is a forward edge and } \\
& \text { 2. } c_{R}(v, w)=f(w, v) \text { if }(v, w) \text { is a backward edge. }
\end{aligned}
$$

- An augmenting path is thus a regular directed path from s to t in the residual graph.

Residual Graphs (cont.)

Figure: A bad example of network flow.
Source: redrawn from [Manber 1989, Figure 7.42].

