Homework 2

蘇俊杰、劉韋成、曾守瑜

Consider again the inductive definition in HW#1 for the set of all binary trees that store non-negative integer key values:

- (a) The empty tree, denoted \perp , is a binary tree.
- (b) If t_l and t_r are binary trees, then $node(k, t_l, t_r)$, where $k \in \mathbb{Z}$ and $k \geq 0$, is also a binary tree.

Refine the definition to include only binary search trees where an inorder traversal of a binary search tree produces a list of all stored key values in increasing order. Then, define inductively a function that outputs the rank of a given key value (the position of the key value in the aforementioned sorted list, starting from position 1) if it is stored in the tree, or 0 if the key is not in the tree.

- The empty tree, denoted \perp , is a binary **search** tree.
- 2 If t_l and t_r are binary search tree, every key value (of descendants) in the nodes of t_i is smaller than k, and every key value (of descendants) in the nodes of t_r is larger than k, then $node(k, t_l, t_r)$, where $k \in Z$ and $k \ge 0$, is also a binary

search tree.

t is a BST and n is the given key value.

$$Rank(t, n) = \begin{cases} 0, \neg Exist(t, n) \\ Rank'(t, n), otherwise \end{cases}$$

$$Exist(t, n) = \begin{cases} false, t = \bot \\ true, t = node(n, t_l, t_r) \\ Exist(t_l, n), t = node(k, t_l, t_r) \text{ and } n < k \\ Exist(t_r, n), t = node(k, t_l, t_r) \text{ and } n > k \end{cases}$$

$$\textit{Rank} \ '(\textit{node}(\textit{k},\textit{t}_\textit{l},\textit{t}_\textit{r}),\textit{n}) = \begin{cases} \textit{Rank} \ '(\textit{t}_\textit{l},\textit{n}),\textit{n} < \textit{k} \\ \textit{Count}(\textit{t}_\textit{l}) + 1,\textit{n} = \textit{k} \\ \textit{Count}(\textit{t}_\textit{l}) + 1 + \textit{Rank} \ '(\textit{t}_\textit{r},\textit{n}),\textit{n} > \textit{k} \end{cases}$$

$$Count(t) = egin{cases} 0, t = oxed{oxed} \ Count(t_l) + 1 + Count(t_r), t = node(k, t_l, t_r) & > 2 & < constant of the count of$$

很多人抄這個

$$Rank(t, n) = Rank'(t, n, 0)$$

$$Rank'(t, n, x) = \begin{cases} 0, t = \bot \\ Rank'(t_l, n, x), t = node(k, t_l, t_r) \text{ and } n < k \\ x + Count(t_l) + 1, t = node(k, t_l, t_r) \text{ and } n = k \\ Rank'(t_r, n, x + Count(t_l) + 1), \text{ otherwise} \end{cases}$$

$$\textit{Count}(t) = \begin{cases} 0, t = \bot \\ \textit{Count}(t_{\textit{I}}) + 1 + \textit{Count}(t_{\textit{r}}), t = \textit{node}(\textit{k}, t_{\textit{I}}, t_{\textit{r}}) \end{cases}$$

◄□▶◀圖▶◀불▶◀불▶ 불 쒸٩○

Consider the following recurrence relation:

$$\begin{cases} T(0) = 0 \\ T(1) = 1 \\ T(h) = T(h-1) + T(h-2) + 1, & h \ge 2 \end{cases}$$

Prove by induction the relation T(h) = F(h+2) - 1, where F(n) is the *n*-th Fibonacci number $(F(1) = 1, F(2) = 1, \text{ and } F(n) = F(n-1) + F(n-2), \text{ for } n \geq 3)$.

[Base Case] (h=0)
$$T(0) = 0 = 1 - 1 = F(0+2) - 1$$

(h=1) $T(1) = 1 = 2 - 1 = F(1+2) - 1$
[Induction Step] $T(h) = T(h-1) + T(h-2) + 1$
 $= (F(h+1) - 1) + (F(h) - 1) + 1$
 $= F(h+1) + F(h) - 1$
 $= F(h+2) - 1$

(2.30) A **full binary tree** is defined inductively as follows. A full binary tree of height 0 consists of 1 node which is the root. A full binary tree of height h + 1 consists of two full binary trees of height h whose roots are connected to a new root. Let T be a full binary tree of height h. The **height** of a node in T is h minus the node's distance from the root (e.g., the root has height h, whereas a leaf has height 0). Prove that the sum of the heights of all the nodes in T is $2^{h+1} - h - 2$.

[Base Case] height=0 $\begin{aligned} & [\text{Induction Hypothesis}] \text{ height}=h+1 \\ & (2*Sum of the height in T) + height of root } \\ & = 2*(2^{h+1}-h-2) + (h+1) \\ & = 2^{h+2}-2h-4+h+1 \\ & = 2^{(h+1)+1}-(h+1)-2 \end{aligned}$

(2.23) The **lattice** points in the plane are the points with integer coordinates. Let P be a polygon that does not cross itself (such a polygon is called **simple**) such that all of its vertices are lattice points (see Figure 1). Let p be the number of lattice points that are on the boundary of the polygon (including its vertices), and let q be the number of lattice points that are inside the polygon. Prove that the area of polygon is $\frac{p}{2} + q - 1$.

Figure 1: A simple polygon on the lattice points.

Area=
$$\frac{3}{2}$$
+0-1= $\frac{1}{2}$ = $\frac{p}{2}$ +q-1

[Induction Step] p=3, q>0

We can find a point q_1 in this triangle.

Connect this q_1 to the three vertices.

Split the large triangle to three small triangle.

Assume that there are q_d nodes on the line.

Induction Hypothesis:

The area of each small triangle is $\frac{p}{2}$ +q-1.

Area=
$$\frac{9+2q_d}{2}$$
+(q-1- q_d)-3 (三個三角形)

Question4(Continue)

[Induction Step] p>3,
$$q \ge 0$$

We can split the shape to a triangle and a polygon.

Assume that there are dq_d nodes on the line.

Area=
$$\frac{p+2q_d}{2}$$
+(q-1- q_d)= $\frac{p}{2}$ +q-1

By M.I., we can prove that the area of the polygon is $\frac{p}{2}+q-1$

Consider the following pseudocode that represents the selection sort. The elements of an array of size n are indexed from 1 through n. Function indexofLargest gives the index of the largest element of the input array within the specified range of indices.

```
 \begin{split} \textbf{Algorithm selectionSort}(A,n); \\ \textbf{begin} \\ & // \text{ the number of elements in } A \text{ equals } n > 0 \\ & last := n; \\ \textbf{while } last > 1 \textbf{ do} \\ & m := indexofLargest(A,1,last); \\ & A[m], A[last] := A[last], A[m]; \quad // \text{ swap} \\ & last := last - 1; \\ \textbf{od}; \\ \textbf{end} \end{split}
```

State a suitable loop invariant for the main loop and prove its correctness.

Selection sort

當原本的陣列 A,在迴圈中發生一次改變,變成 A', 更仔細說,A[1] 到 A[n] 當中最大的值被放到 n 號位,變成 A'_1

$$A \ \boxed{9} \ \boxed{4} \ \boxed{8} \ \boxed{7} \ \textit{last} = \textit{n}$$

$$A'_1 \mid 7 \mid 4 \mid 8 \mid 9 \mid last = n-1$$

再從 $A'_{i}[1]$ 到 $A'_{i}[n-1]$ 當中挑最大的值放到 n-1 號位,變成 A'_{i} last = n - 2

$$A_2'$$
 7 4 8 9 $last = n-2$

設 k 為迴圈執行過的圈數,則迴圈執行 k 次後, last = n - k藍底色的部份是已經排序完畢的元素,它一定會比左邊所有元素 都大

對 A'[last + 1] 而言,它的值一定比 1 到 last 位置的元素都來得大,也就是

$$indexofLargest(A', 1, last + 1) = last + 1$$

而在迴圈的上一個 iteration 就已經排好的 A'[last + 2] · 它的值一定比 1 到 last + 1 位置的元素來得大,也就是

$$indexofLargest(A', 1, last + 2) = last + 2$$

以此類推,能夠統整出一條規則

$$\forall$$
 last $+1 \leq i \leq n$. indexofLargest $(A', 1, i) = i$

迴圈不變量

$$Inv(last, A, n) =$$

 $(1 \le last \le n) \land (\forall last + 1 \le i \le n. indexofLargest(A', 1, i) = i)$

給定一個陣列 A 與其長度 n · 迴圈開始前 last = n 迴圈執行 1 步後 · 陣列內容發生改變 · 在數學上會將它視為另一個陣列 · 這裡用 A'_i 表示

$$Inv(n, A, n) \rightarrow Inv(n - 1, A'_1, n)$$

如果左邊的不變量是對的,右邊也會是對的 概念上就是把「確定已經排好」的範圍往左擴大一格

$$Inv(n-k, A'_k, n) \rightarrow Inv(n-(k+1), A'_{k+1}, n)$$

◆ロト ◆団ト ◆ 恵ト ◆ 恵ト ・ 恵 ・ 夕久(*)

蘇俊杰、劉韋成、曾守瑜

Proof

Base case:
$$k = 0$$
, $last = n - 0 = n$,
" $lnv(n, A, n) = (1 \le n \le n) \land (\forall n + 1 \le i \le n)$

n. indexofLargest(A', 1, i) = i)" is automatically true.

Induction: $n-1 \ge k > 1$, last = n-k, From the inductive hypothesis of last = n-k+1, we get " $\forall \ n-k+2 \le i \le n$. indexofLargest(A',1,i)=i" and on the k-th

iteration of the loop, we pick the largest element between A'[1] and A'[n-k+1] to put in the n-k+1-th position.

So, with the new status of the array, say A'', we can say more about A'' than A': A''[n-k+1] is larger than any element on its left side.

That is, indexofLargest(A'', 1, n - k + 1) = n - k + 1.

Therefore, \forall $last + 1 \leq i \leq n$. indexofLargest(A'', 1, i) = i is satisfied with last = n - k. \square