Homework 4

Yu-Ju Teng Ling-Hsuan Chen

=] & = E DA
Yu-Ju Teng Ling-Hsuan Chen Homework 4

Question 1

1. (5.3 adapted) Consider algorithm Mapping (see notes/slides). The algorithm starts with
a nonempty set A, of course, since a mapping from A to itself is considered. Is it possible
that the set S will become empty at the end of the algorithm? Show an example, or prove

that it cannot happen.

Yu-Ju Teng Ling-Hsuan Chen Homework 4 Algorithms 2023 2/17

Question 1

One-to-One Mapping (cont.)

Algorithm Mapping (f,n);
begin
S = A4
for j ;=1 ton do c[j] :=0;
for j := 1 to n do increment ¢[f[}]];
for j :==1ton do
if c[s] = 0 then put j in Queue;
while Queue not empty do
remove i from the top of Queue;
S = 85—{i};
decrement ¢[f[z]];
if ¢[f[é]] = 0 then put f[z] in Queue
end

Yu-Ju Teng Ling-Hsuan Chen Homework 4 Algorithms 2023 3/17

Question 1

If A (original set) =0, then S = C A is still empty.

If A+ (), suppose S will become empty at the end.
Before the set become to the empty set, the last step is eliminating
the last element (called a) in S and c[a] = 0.

Q If f(a) = a, it is impossible because c[a] = 0.

@ If f(a) # a, it is impossible because a is the only one element in

S.

Hence, we conclude that when A # (), S will not become empty.

Yu-Ju Teng Ling-Hsuan Chen Homework 4 Algorithms 2023 4/17

Question 2

2. Design an efficient algorithm that, given a sorted array A of n integers and an integer z,
determine whether A contains two integers whose sum is exactly z. Please present your
algorithm in adequate pseudocode and make assumptions wherever necessary. Give an
analysis of its time complexity. The more efficient your algorithm is, the more points you
will be credited for this problem.

Yu-Ju Teng Ling-Hsuan Chen Homework 4 Algorithms 2023 5/17

Question 2

The logic of the algorithm:
© Assume A is a sorted array with increasing order.
@ Let /, r be the indexes of the first and the last element in Array
A.
© While I < r, do the check for each pair:
© If A/l + Alr] = x,
return True.
@ else if A[l] + A[r] < x,
increase / by 1.
O else if A[l] + A[r] > x,
decrease r by 1.
© If there are no solutions, return False at the end of the algorithm.

Yu-Ju Teng Ling-Hsuan Chen Homework 4 Algorithms 2023 6/17

Question 2

The pseudocode are showed as followed:

1: Algorithm SmartTwoSum(A, x);

2: // Let n be the length of array A.
3 [:=0;

4 r:=n-—1;

5: while / < r do

6 if A/l + A[r] = x then

7 return True;

8 else if A[l] + A[r] < x then
9

: [=1+1,
10: else if A[l] + A[r] > x then
11: r=r—1;
12: return False

Since in the worst case, we go through the whole array at most once.

The time complexity of this algorithm is O(n).

Algorithms 2023

7/17

Question 3

3. (5.7) Write a program (or modify the code discussed in class) to recover the solution (i.e.,
enumerate the elements in the solution) to a knapsack problem using the belong flag. You
should make your algorithm as efficient as possible.

Yu-Ju Teng Ling-Hsuan Chen Homework 4 Algorithms 2023 8/17

Question 3

Use the table P obtained from the Knapsack algorithm,
where P(n, K) denotes the solution to the problem instance with n as
the number of the items and K as the size of the knapsack.

For0<i<nand 0 < k <K,
1. If P[i, k].exist is false, then there’s no solution.

2. If P[i, k].exist is true, check whether S[i] is in the solution
(i.e., whether P[i, k].belong = true).

3. If so, put S[i] into the solution and check for P[i — 1, k — S[i]].
4. if not, check for P[i — 1, k].

Yu-Ju Teng Ling-Hsuan Chen Homework 4 Algorithms 2023 9/17

Question 3

1: Algorithm Knapsack Recover(S, k, P);
2 solution := [];

3 i:=n;

4 if P[i, k].exist = false then

5: return " No such subset exists!”;
6 while k > 0 do

7 if P[i, k].belong = true then

8 solution.append(S|[i]);

9 k .=k — S[i];

10: i=i—-1;

11: return solution;

Yu-Ju Teng Ling-Hsuan Chen Homework 4 Algorithms 2023 10/17

Question 3

Recover(S, 11, P) = [6, 3, 2]

01 2 345 673891011 12 13 14 15 16

Yu-Ju Teng Ling-Hsuan Chen Homework 4

Algorithms 2023

11/17

Question 4

4. (5.17) The Knapsack Problem that we discussed in class is defined as follows. Given a set
S of n items, where the ith item has an integer size S[i], and an integer K, find a subset
of the items whose sizes sum to exactly K or determine that no such subset exists.

We have described in class an algorithm to solve the problem. Modify the algorithm to
solve a variation of the knapsack problem where each item has an unlimited supply. In
your algorithm, change the type of P[i,k].belong into integer and use it to record the
number of copies of item 7 needed.

Yu-Ju Teng Ling-Hsuan Chen Homework 4 Algorithms 2023 12/17

Question4

The original version of the algorithm from class:

1: Algorithm KNAPSACK(S, K);
2: P[0, 0].exist := true;

3: for k:=1to K do

4: P[0, k].exist := false;

5: for i:==1to ndo

6: for k:=0to K do

7: Pli, k].exist := false;

8: if P[i — 1, k].exist then

9: Pli, k].exist := true;

10: Pli, k].belong := false;
11: else if k — S[i] > 0 then

12: if P[i — 1,k — S[i]].exist then
13: Pli, k].exist := true;
14: Pli, k].belong := true;

Yu-Ju Teng Ling-Hsuan Chen Homework 4 Algorithms 2023

13/17

Question 4

1: Algorithm KNAPSACK UNLIMITED(S, K);
2 P[0, 0].exist := true;

3 P[0, 0].belong := 0;

4: for k:=1to K do

5: P[0, k].exist := false;

6 for i:==1to ndo

7 for k:=0to K do

8 P[i, k].exist := false;

9 if P[i — 1, k].exist then

10: Pli, k].exist := true;

11: Pli, k].belong := 0;

12: else if k — S[i] > 0 then

13: if P[i, k — S[i]].exist then

14: P[i, k].exist := true;

15: Pli, k].belong := P[i, k — S[i]].belong + 1;

Yu-Ju Teng Ling-Hsuan Chen Homework 4 Algorithms 2023 14 /17

Question 5

5. (5.23) Write a non-recursive program (in suitable pseudocode) that prints the moves of
the solution to the towers of Hanoi puzzle. The three pegs are respectively named A, B,
and C, with n (generalizing the original eight) disks of different sizes stacked in decreasing

order on peg A.

Yu-Ju Teng Ling-Hsuan Chen Homework 4 Algorithms 2023 15 /17

Questionb

The following pseudo-code shows how recursive Hanoi works.

1: Algorithm RECURSIVEHANOI(n, s, t, a);

2 // s is source peg, t is target peg, and a is auxiliary peg.
3 if n =1 then

4 print s+" to" +t;

5: return ;

6 RecursiveHanoi(n — 1,s, a, t);

7 RecursiveHanoi(1 s, t,a);

8 RecursiveHanoi(n — 1, a, t, s);

Yu-Ju Teng Ling-Hsuan Chen Homework 4 Algorithms 2023 16 /17

Question 5

We can use a stack to represent the steps in a recursive version.
Due to the first-in-last-out (FILO) property of the stack, the
sequence of operators in the stack version should be reversed.

1:
2
3
4:
5:
6.
7
8

9:
10:
11:
12:
13:

Algorithm HaANoOI(n, s, t, a);

// s is source peg, t is target peg, and a is auxiliary peg.
stk := empty stack;
stk.push({n, s, t, a));
while !stk.empty() do
p := stk.top();
stk.pop();
if p.h =1 then
print p.s+" to" + p.t;
else if p.h > 1 then
Stk.push(< p.h-1, p.a, p.t, p.s >), //RecursiveHanoi(n-1, a, t, s)
stk.push({ 1 , p.s, p.t, p.a)); //RecursiveHanoi(1, s, t, a)
stk.push(< p.h-1, p.s, p.a, p.t >), //RecursiveHanoi(n-1, s, a, t)

(h,s, t,a) is a struct to represent the state of a Hanoi game, where h denotes the number

of pegs to move, s denotes source peg, t denotes target peg, and a denotes auxiliary peg.

Yu-Ju Teng Ling-Hsuan Chen Homework 4 Algorithms 2023

17 /17

