Homework 9

Yu-Ju Teng Ling-Hsuan Chen

=] & = E DA
Yu-Ju Teng Ling-Hsuan Chen Homework 9

Problem 1

1. (7.16 modified)

(a) Run the strongly connected components algorithm (the original version) on the
directed graph shown in Figure 1. When traversing the graph, the algorithm
should follow the given DFS numbers (from 9 down to 1). Show the High
values as computed by the algorithm in each step.

(b) Add the edge (6,5) to the graph and discuss the changes this makes to the
execution of the algorithm.

/
N

Figure 1: A directed graph with DFS numbers (from 9 down to 1)

Yu-Ju Teng Ling-Hsuan Chen Homework 9 Algorithms 2023 2/21

Problem 1 (a)

Change the DFS numbers to the corresponding alphabetical order to
avoid confusion.

Yu-Ju Teng Ling-Hsuan Chen Homework 9 Algorithms 2023 3/21

Problem 1 (a)

When running SCC(v), we do as the following:
1. When encountering an unvisited vertex w, we run SCC(w) and
keep exploring.

2. When encountering a visited vertex w’ and w’ does not belong to
any component, then we should consider whether w’ has a higher
leader than v's. If so, update v.high to w'.DFS_Number.

3. When exhausting all edges, we first check whether v is the leader
of itself.

3.1 If so, a SCC was found.

3.2 Otherwise we backtrack and assign v's leader to vertices along
the way if v's leader is higher.

Yu-Ju Teng Ling-Hsuan Chen Homework 9 Algorithms 2023 4/21

Problem 1 (a)

—
o
~
Qo
- [e e e o))
E=i¥e\| 00 1 1 1 1 1 1 00 00 00 00 0
ap ™M L 1 N N0 0O OO
- <t [I T R S a S A - S o o
v O 00 W0 W0 W0 w0 w0 w0 wm w0 w0
T © 1O © OV YW WYWWYWWOWWOWWOWOWOWOWo©o
O~ [N N T N .
0 oo 00 00 0O 0O CO 00O O 0O 0O O O 0O W O O
T O (el le) o) i) Je o) e B o) Je) i) Jle) Be) i)
=
[
e]
3 E
£ 3 —
£20o v@0 sO@O2 we 0~ wa(®)
> n
L
[a]

‘Component,Num 55 413 255 5‘

5/21

Algorithms 2023

Homework 9

Yu-Ju Teng Ling-Hsuan Chen

Problem 1 (b)

Add the edge (6, 5) (=(d,e)) to the graph and discuss the changes.

Yu-Ju Teng Ling-Hsuan Chen Homework 9 Algorithms 2023 6/21

Problem 1 (b)

—
=)
—~
T
—
o
~
Qo
- [I e e e o))
E=i¥e\| o0 0 1 1 1 1 1 1 00 00 00 00 0
ap ™M L 1 N N0 0O OO
“ < [N I e e JNe JNe JiNe Jite BT e e JiNe BNNe]
[PINTol [T JNTe JEte Rt JNe JNe JiNe Jite Il e e JiNe BNNe]
T © 1O O OV WYWWYWWYWWYYLOWOWwwouo
O~ [S N .
0 oo 0O 00 0O 0O CO 00O O 0O 0O O O 0O W O O
T O (el e o) ie) Je) o) e M o) Je) i) Jle) Be) o))
=
[
e]
3 E
2 3 _
£2covs 0w o@O00 we 0o 0o
> n
L
[a]

‘Component,Num 3321113 3 3‘

7/21

Algorithms 2023

Homework 9

Yu-Ju Teng Ling-Hsuan Chen

Problem 2

2. (7.88) Let G = (V, E) be a directed graph, and let T' be a DFS tree of G. Prove
that the intersection of the edges of T with the edges of any strongly connected
component of G form a subtree of T

Yu-Ju Teng Ling-Hsuan Chen Homework 9 Algorithms 2023 8/21

Problem 2

Simple example:

2 2

(a) DFS tree (b) SCC edges (c) intersection

Yu-Ju Teng Ling-Hsuan Chen Homework 9 Algorithms 2023 9/21

Problem 2

Proof by contradiction:

Suppose the intersection are two subtrees T; and T,. Because T;
and T, are in the same strongly connected component, according to
the property of SCC, there must be an edge from T; to T, and an
edge from T, to T;.

No matter which subtree the DFS procedure reaches first, it will
finally go through the edge which connects T; and T, and visit the
other subtree. Then the DFS tree T must contain that edge but it
clearly doesn't. Contradiction.

Yu-Ju Teng Ling-Hsuan Chen Homework 9 Algorithms 2023 10/21

Problem 3

3. We have discussed in class the idea of using DFS to find an augmenting path (if one
exists) in a network with some given flow. Please present the algorithm in suitable
pseudocode.

Yu-Ju Teng Ling-Hsuan Chen Homework 9 Algorithms 2023 11/21

Problem 3

Algorithm AugmentingPath(G(V, E),s, t)
begin
Temp_S, Result S := empty stack;
found := false;
AugmentingPathDFS(G, s);
if found then
ResultPath_S := empty stack;
post_v := Result_S.pop();
while Result_S # empty do
current_v := Result_S .pop();
ResultPath_S.push(edge(current_v, post_v));
post_v := current_v;,
while ResultPath_S # empty do
print ResultPath_S.pop();
else
print " Augmenting path does not exist.”;
end

Yu-Ju Teng Ling-Hsuan Chen Homework 9 Algorithms 2023 12/21

Problem 3

Algorithm AugmentingPathDFS(G(V, E),v)
begin
mark v ;
Temp_S.push(v);
if v =1t then
// reach destination, meaning find the path
ResultS := TempS,
found := true;
for each edge (v, w) € E do
if found then
break;
if f(v,w) <c(v,w)or f(w,v) > 0 then
if w is unmarked then
AugmentingPathDFS(G, w);

Temp_S.pop();

end
Yu-Ju Teng Ling-Hsuan Chen Homework 9 Algorithms 2023 13/21

Problem 4

4. Consider designing an algorithm by dynamic programming to determine the length
of a longest common subsequence of two strings (sequences of letters). For example,
“abbec” is a longest common subsequence of “abcabcabc” and “aaabbbcec”, and
so is “abcec”.

(a) Formulate the solution using recurrence relations.

(b) Present the algorithm in suitable pseudocode, based on the previous recursive
formulation. What is the time complexity of your algorithm?

Yu-Ju Teng Ling-Hsuan Chen Homework 9 Algorithms 2023 14 /21

Problem 4 (a)

Let LCS(A, B) be the length of a longest common subsequence of
strings A and B.

Let string A= A"+ X (X is a single character), string B=B"+Y
(Y is a single character). Therefore,

LCS(A,B) =
0 if Aor B is an empty string
LCS(A',B")+1 ifX=Y

max(LCS(A’, B),LCS(A,B")) if X # Y

Yu-Ju Teng Ling-Hsuan Chen Homework 9 Algorithms 2023 15/21

Problem 4 (b)

Assume string A and B start the index from 1:
Algorithm calculateLCS(A, B)
begin
m, n := len(A), len(B);
initialize LCS[m + 1][n + 1] with 0; // base case
for i :=1to mdo
for j :=1to ndo
if A[i] = BJ[j] then
LCS[i1[j]:= LCS[i — 1][j — 1] + 1;
else
LCS[i]17] == max(LCS[i — 1][j1, LCSTi L) — 1)
return LCS[m][n];
end

Time complexity: O(mn).

Yu-Ju Teng Ling-Hsuan Chen Homework 9 Algorithms 2023 16 /21

Problem 5

5. The cost of finding a key value in a binary search tree is linearly proportional to
the depth/level of the node where the key value is stored, with the root considered
to be at level 0. Obviously, for a key value that is known to be looked up more
frequently, it is better stored in a node at a smaller level.

Consider designing by dynamic programming an algorithm that, given the look-up
frequencies of n key values, constructs an optimal binary search tree that will incur
the least total cost for performing all the look-ups.

(a) Formulate the solution using recurrence relations; let F[1..n] be the look-up
frequencies of the n key values K|[1..n], which are in sorted order.

(b) Present the algorithm in suitable pseudocode, based on the previous recursive
formulation. What is the time complexity of your algorithm?

Yu-Ju Teng Ling-Hsuan Chen Homework 9 Algorithms 2023 17 /21

Problem 5 (a)

Among all possible subtrees, find the one with minimal cost.

For each subtree, its cost is the sum of (1) left child, (2) right child,
and (3) the frequency of all nodes in the subtree since every level of
each point is increasing by 1 due to the new added root.

Let OPTcost(i,) be the minimal cost of the subtree containing
items from / to j.

Making each node as root r, try to find the one which can provide
the minimal cost.

OPTcost(i,j) =
0 if i >j

Fli] if i=j
min;<,<; {optcost(i,r — 1) + optcost(r + 1,j) + > _; F[k]} otherwise

Yu-Ju Teng Ling-Hsuan Chen Homework 9 Algorithms 2023 18 /21

Problem 5 (b)

function CoNsTRUCTOPTIMALBST(K, F, n)
// initialization
initialize cost[n + 1][n + 1] with oo;
initialize root[n + 1][n + 1] with 0;
for i=1to ndo
cost[i|[i] := FJi]
root[i][i] :== i

// continue ...

Yu-Ju Teng Ling-Hsuan Chen Homework 9 Algorithms 2023 19/21

Problem 5 (b)

// L = number of children in tree
for L=2to ndo
fori=1ton—(L—1)do
Jji=i+L-1
freqSum := FreqSum(F,i,j) // calculate S _. F[k]
forr=itojdo
¢ := freqSum
if r > i then
¢ := ¢ + cost[i][r — 1]
if r </ then
¢ := ¢+ cost[r + 1][j]
if ¢ < cost[i][j] then
cost[i][j] .= ¢
root[i][j] :==r
return cost[1][n] , BuildTree(K, root, 1, n)

Yu-Ju Teng Ling-Hsuan Chen Homework 9 Algorithms 2023 20/21

Problem 5 (b)

function FREQSUM(F, i, j)
freq_sum := 0
for k =ito j do
freq_sum := freq_sum + F[K]
return freq_sum

function BUILDTREE(K, R, i,)
if i > j then
return null;
root := K[R[i][/]]
root.left := BuildTree(K, R, i, R[i][/] — 1)
root.right := BuildTree(K, R, R[i][j] + 1,))
return root
Time complexity: O(n®).

Yu-Ju Teng Ling-Hsuan Chen Homework 9 Algorithms 2023 21/21

