
Algorithms [Compiled on November 8, 2023] Fall 2023

Suggested Solutions to Midterm Problems

1. Consider the following inductive definition for the set of all binary trees that store integer
key values:

• The empty tree, denoted ⊥, is a binary tree, storing no key value.

• If tl and tr are binary trees, then node(k, tl, tr), where k ∈ Z, is also a binary tree
with the root storing key value k.

Refine the definition to include only binary search trees where an inorder traversal of a
binary search tree produces a list of all stored key values in increasing order.

To make the definition mathematically precise, you must define suitable functions maxVal
and minVal that return respectively the maximum key value and the minimum key value
stored in a given binary tree (which may be empty). You may use ∞ (−∞) to denote the
value that is larger (smaller) than any other value.

Solution. The set of all binary search trees that store integer key values may be defined
as follows:

(a) The empty tree, denoted ⊥, is a binary search tree, storing no key value.

(b) If tl and tr are binary search trees, then node(k, tl, tr), where k ∈ Z , maxVal(tl) ≤ k,
and k ≤ minVal(tr), is also a binary search tree with the root storing key value k.

The maximum key value maxVal(t) and the minimum key value minVal(t) stored in a
binary tree t are defined as follows:

maxVal(t) =

{
−∞ if t = ⊥
max(maxVal(tl), k,maxVal(tr)) if t = node(k, tl, tr)

minVal(t) =

{
∞ if t = ⊥
min(minVal(tl), k,minVal(tr)) if t = node(k, tl, tr)

2

2. Let n be a natural number (n ≥ 0) and p be a prime (p ≥ 2). Let s be the sum of the
p-ary digits in the representation of n in base p. Let m be the multiplicity of the factor
p in n!, i.e., the maximum value m such that pm divides n!. For example, if n = 6 and
p = 2, then n = 1× 22 + 1× 21 + 0× 20 = 1102 and hence s = 1 + 1 + 0 = 2. Moreover,
24 divides 6! but 25 does not and therefore m = 4.

Prove that

m =
n− s

p− 1
.

In the example above, n−s
p−1 = 6−2

2−1 = 4 = m.

Solution. The proof is by induction on n.

Base case (n = 0): When n = 0, we have s = 0, n! = 1, and m = 0 and hence
n−s
p−1 = 0−0

p−1 = 0 = m.

Inductive step (n > 0): Let s and m be as defined in the problem statement for n. Let
s′ be the sum of the p-ary digits of n − 1 and m′ be the multiplicity of the factor p in

1

(n− 1)!. We then have m−m′ as the multiplicity of the factor p in n, i.e., pm−m′
divides

n but pm−m′+1 does not, which implies that n, when represented in base p, has at least
(m−m′ + 1) p-ary digits and exactly (m−m′) trailing 0’s. Let di be the i-th p-ary digit
of n, counting from the least significant digit (which is the 0-th digit). When represented
in base p, n is in the form of . . . dm−m′+1dm−m′0 . . . 0, where dm−m′ ̸= 0 and therefore
n−1 is in the form of . . . dm−m′+1(dm−m′ −1)(p−1)(p−1) . . . (p−1) with m−m′ trailing
(p− 1)’s.

So, s′−s = (dm−m′−1)−dm−m′+(m−m′)(p−1) = (m−m′)(p−1)−1 and hence s′−s+1 =
(m−m′)(p− 1), m−m′ = s′−s+1

p−1 , and m = s′−s+1
p−1 +m′. From the induction hypothesis,

we have m′ = (n−1)−s′

p−1 . It follows that m = s′−s+1
p−1 + (n−1)−s′

p−1 = s′−s+1+(n−1)−s′

p−1 = n−s
p−1 . 2

3. In a homework problem, to determine whether f(n) = O(g(n)) and/or f(n) = Ω(g(n)),
for a given pair of monotonically growing functions f and g that map natural numbers to
non-negative real numbers, you may have claimed and used the following:

If f(n) = o(g(n)), then f(n) = O(g(n)) and f(n) ̸= Ω(g(n)).

Prove that the claim is indeed true.

Solution. When f(n) = o(g(n)), i.e., lim
n→∞

f(n)

g(n)
= 0, it means that, for every real ε > 0,

there exists a natural number N such that, for every natural number n > N , |f(n)g(n) −0| < ε

or f(n) < εg(n) (since both f(n) and g(n) are non-negative). It follows that there exist a
real constant c (by taking one of the ε values) and a natural constant N ′ (by taking N +1
where N is suited for the particular ε value taken) such that, for all n ≥ N ′, f(n) ≤ cg(n),
and hence f(n) = O(g(n)).

We next show that, given the same condition of f(n) = o(g(n)), f(n) ̸= Ω(g(n)), i.e., it
is not the case that there exist constants c and N (both greater than 0) such that, for all
n ≥ N , f(n) ≥ cg(n), which is equivalent to the following statement: for every constant
c > 0, we have “for every constant N > 0, there exists some n ≥ N and f(n) < cg(n).”
The definition of f(n) = o(g(n)) implies that, for every constant c > 0, there exists
a constant N > 0 such that, for every n > N , f(n) < cg(n) and therefore, for every
constant c > 0, we have “for every constant N ′ > 0, there exists some n ≥ N ′ and
f(n) < cg(n),” which is the preceding statement that is equivalent to f(n) ̸= Ω(g(n)). 2

4. The Knapsack Problem that we discussed in class is defined as follows: Given a set S of n
items, where the ith item has an integer size S[i], and an integer K, find a subset of the
items whose sizes sum to exactly K or determine that no such subset exists.

We have described in class an algorithm (see the Appendix) to solve the problem. Modify
the algorithm to solve a variation of the Knapsack Problem where each item has an
unlimited supply. In your algorithm, please change the type of P [i, k].belong into integer
and use it to record the number of copies of item i needed. Give an analysis of its time
complexity. The more efficient your algorithm is, the more points you will get for this
problem.

Solution.

Algorithm Knapsack Unlimited (S,K);
begin

P [0, 0].exist := true;

2

P [0, 0].belong := 0;
for k := 1 to K do

P [0, k].exist := false
end for
for i := 1 to n do

for k := 0 to K do
P [i, k].exist := false;
if P [i− 1, k].exist then

P [i, k].exist := true;
P [i, k].belong := 0

else if k − S[i] ≥ 0 then
if P [i, k − S[i]].exist then

P [i, k].exist := true;
P [i, k].belong := P [i, k − S[i]].belong + 1

end if
end if

end if
end for

end for
end

From the main nested for-loops, we see that the complexity is O(nK). (Note: the bound
should be understood as O(n2logK), where logK represents the input size of the number
K.) 2

5. Suppose that you are given an algorithm/function called subsetSum as a black box (you
cannot see how it is designed) that has the following properties: If you input any sequence
X of real numbers and an integer k, subsetSum(X, k) will answer “yes” or “no”, indicating
whether there is a subset of the numbers whose sum is exactly k. Show how to use this
black box to find the subset whose sum is k, if it exists. You should use the black box
O(n) times (where n is the size of the sequence).

Solution. We assume that a sequence of n numbers are stored in an array of n elements,
where the elements are indexed from 1 through n.

Algorithm Print_Subset(S,k);

begin

if subsetSum(S,k)="no" then

print "No suitable subset"; halt

end if;

print "Below is a suitable subset:";

sum := 0.0;

i := 1;

while sum<k do

this := S[i];

S[i] := 0.0; // Remove the value of S[i] temporarily.

if subsetSum(S,k)="no" then

print this;

sum := sum + this;

S[i] := this // Restore the value of S[i].

3

// If "yes", we should not restore the value of S[i]. Why?

end if;

i := i + 1

end while

end

2

6. Consider the solutions to the union-find problem discussed in class. Suppose we start with
a collection of ten elements: A, B, C, D, E, F , G, H, I, and J .

(a) Assuming the balancing, but not path compression, technique is used, draw a diagram
showing the grouping of these ten elements after the following operations (in the order
listed) are completed: union(A,B), union(C,D), union(E,F), union(G,H), union(I,J),
union(A,D), union(F,G), union(D,J), union(J,H).

In the case of combining two groups of the same size, please always point the second
group to the first.

Solution.

A nil

B C

D

I

J

E

F G

H

2

(b) Repeat the above, but with both balancing and path compression.

Solution.

A nil

B C

D

I

J

E

F G

H

2

7. Please present in suitable pseudocode the algorithm (discussed in class) for rearranging
an array A[1..n] of n integers into a max heap using the bottom-up approach.

Solution.

4

Algorithm Build_Heap(A,n);

begin

for i := n DIV 2 downto 1 do

parent := i;

child1 := 2*parent;

child2 := 2*parent + 1;

if child2 > n then child2 := child1 end if;

if A[child1]>A[child2] then maxchild := child1

else maxchild := child2 end if;

while maxchild<=n and A[parent]<A[maxchild] do

swap(A[parent],A[maxchild]);

parent := maxchild;

child1 := 2*parent;

child2 := 2*parent + 1;

if child2 > n then child2 := child1 end if;

if A[child1]>A[child2] then maxchild := child1

else maxchild := child2 end if

end while

end for

end

2

8. Below is a variant of the insertion sort algorithm.

Algorithm Insertion Sort (A,n);
begin

for i := 2 to n do
a := A[i];
j := i;
while j > 1 and A[j − 1] > a do

A[j] := A[j − 1];
j := j − 1;

end while
A[j] := a;

end for
end

Draw a decision tree of the algorithm for the case of A[1..3], i.e., n = 3. In the decision
tree, you must indicate (1) which two elements of the original input array are compared
in each internal node and (2) the sorting result in each leaf. Please use X1, X2, X3 (not
A[1], A[2], A[3]) to refer to the elements (in this order) of the original input array.

Solution.

5

X1 : X2

X1 : X3

X2 : X3

X3X2X1X2X3X1

X2X1X3

X2 : X3

X1 : X3

X3X1X2X1X3X2

X1X2X3

≤ >

2

9. Construct a Huffman code tree for a text composed from seven characters A, B, C, D, E,
F, and G with frquencies 20, 10, 3, 8, 28, 4, and 12 respectively. And then, list the codes
for all the characters according to the code tree.

Solution.

85

35

15

7

3

C

4

F

8

D

20

A

50

22

10

B

12

G

28

E

Character Frequency Code

A 20 01
B 10 100
C 3 0000
D 8 001
E 28 11
F 4 0001
G 12 101

2

10. Given two strings A = bbaaa and B = bbbaba, what is the result of the minimal cost
matrix C[0..5, 0..6], according to the algorithm discussed in class for changing A character
by character into B? Aside from giving the cost matrix, please show the details of how
the entry C[4, 5] is computed from the values of C[3, 4], C[3, 5], and C[4, 4].

Solution.

6

b b b a b a

0 1 2 3 4 5 6

b 1 0 1 2 3 4 5

b 2 1 0 1 2 3 4

a 3 2 1 1 1 2 3

a 4 3 2 2 1 2 2

a 5 4 3 3 2 2 2

C[4, 5] = min

C[3, 5] + 1 = 2 + 1 = 3 (deleting A4),
C[4, 4] + 1 = 1 + 1 = 2 (inserting B5),
C[3, 4] + 1 = 1 + 1 = 2 (A4 ̸= B5)

 = 2

2

Appendix

• The notions of O, Ω, and o are defined as follows.

– A function f(n) is O(g(n)) for another function g(n) if there exist constants c and
N such that, for all n ≥ N , f(n) ≤ cg(n).

– A function f(n) is Ω(g(n)) if there exist constants c and N such that, for all n ≥ N ,
f(n) ≥ cg(n).

– A function f(n) is o(g(n)) if lim
n→∞

f(n)

g(n)
= 0.

• Below is the algorithm discussed in class for determining whether a solution to the (orig-
inal) Knapsack Problem exists:

Algorithm Knapsack (S,K);
begin

P [0, 0].exist := true;
for k := 1 to K do

P [0, k].exist := false;
for i := 1 to n do

for k := 0 to K do
P [i, k].exist := false;
if P [i− 1, k].exist then

P [i, k].exist := true;
P [i, k].belong := false

else if k − S[i] ≥ 0 then
if P [i− 1, k − S[i]].exist then

P [i, k].exist := true;
P [i, k].belong := true

end

7

