
Algorithms 2023: Reduction

(Based on [Manber 1989])

Yih-Kuen Tsay

November 27, 2023

1 Introductin

Introduction

• The basic idea of reduction (transformation is perhaps a better term) is to solve a problem with the
solution to another “similar” problem.

• When Problem A can be reduced (transformed) to Problem B, there are two consequences:

– A solution to Problem B may be used to solve Problem A.

– If A is known to be “hard”, then B is also necessarily “hard”.

/* A reduction involves transforming/converting the input of Problem A into an input of Problem
B. The conversion should be reasonably efficient (this will be made precise in the topic of NP-
completeness). Otherwise, one might be able to reduce a hard problem to a simpler one, by solving the
more time-consuming part during the process of conversion and leaving the easier part to the second
problem. */

• One should avoid the pitfall of reducing a problem to another that is too general or too hard.

2 Bipartite Matching

Matching

• Given an undirected graph G = (V,E), a matching is a set of edges that do not share a common
vertex.

• A maximum matching is one with the maximum number of edges.

• A maximal matching is one that cannot be extended by adding any other edge.

Bipartite Matching

• A bipartite graph G = (V,E,U) is a graph with V ∪U as the set of vertices and E as the set of edges
such that

– V and U are disjoint and

– The edges in E connect vertices from V to vertices in U .

Problem 1. Given a bipartite graph G = (V,E,U), find a maximum matching in G.

1

Bipartite Matching (cont.)

(a) (b)

Figure: A bipartite graph and a maximum matching.
Source: adapted from [Manber 1989, Figure 7.37].

Bipartite Matching (cont.)

(a) (b)

Figure: A maximal matching and a maximum matching.
Source: adapted from [Manber 1989, Figure 7.37].

3 Network Flows

Networks

• Consider a directed graph, or network, G = (V,E) with two distinguished vertices: s (the source) with
indegree 0 and t (the sink) with outdegree 0.

• Each edge e in E has an associated positive weight c(e), called the capacity of e.

The Network Flow Problem

• A flow is a function f on E that satisfies the following two conditions:

1. 0 ≤ f(e) ≤ c(e).

2.
∑
u

f(u, v) =
∑
w

f(v, w), for all v ∈ V − {s, t}.

• The network flow problem is to maximize the flow f for a given network G.

2

4 Bipartite Matching to Network Flow

Bipartite Matching to Network Flow

s t

Figure: Reducing bipartite matching to network flow. Every edge has capacity 1.
Source: redrawn from [Manber 1989, Figure 7.39].

Bipartite Matching to Network Flow (cont.)

• Mapping from the input G = (V,E,U) of the bipartite matching problem to the input G′ = (V ′, E′)
and c of the network flow problem:

– The network is G′ = (V ′, E′) where

∗ V ′ = {s} ∪ V ∪ U ∪ {t}
∗ E′ = {(s, v) | v ∈ V } ∪ E ∪ {(u, t) | u ∈ U}

– The capacity for every e ∈ E′ is 1, i.e., ∀e ∈ E′, c(e) = 1.

• Correspondence between the two solutions

– A maximum flow f in G′ defines a maximum matching Mf in G.

– A maximum matching M in G induces a maximum flow fM in G′.

5 Linear Programming

Notations

• Let v denote a vector (v1, v2, . . . , vn) of n constants or n variables.

• In the following, a, b, c, and e are vectors of n constants.

• And, x and y are vectors of n variables.

• The (inner or dot) product a · x of two vectors a and x is defined as follows:

a · x =

n∑
i=1

ai · xi

3

Linear Programming

• Objective function:
c · x

• Equality constraints:
e1 · x = d1
e2 · x = d2

...
em · x = dm

• Inequality constraints may be turned into equality constraints by introducing slack variables.

• Non-negative constraints: xj ≥ 0, for all j in P , where P is a subset of {1, 2, . . . , n}.

• The goal is to maximize (or minimize) the value of the objective function, subject to the equality
constraints.

6 Network Flow to Linear Programming

Network Flow to Linear Programming

• From the input G = (V,E) and c of the network flow problem to the objective function and constraints
of linear programming:

– Let x1, x2, . . . , xn represent the flow values of the n edges.

– Objective function: ∑
i∈S

xi

where S is the set of edges leaving the source.

– Inequality constraints:
xi ≤ ci, for all i, 1 ≤ i ≤ n

where ci is the capacity of edge i.

– Equality constraints: ∑
i leaves v

xi −
∑

j enters v

xj = 0, for every v ∈ V \ {s, t}

– Non-negative constraints: xi ≥ 0, for all i, 1 ≤ i ≤ n.

/* If f is a maximum flow for G = (V,E) and c, then xi = f(i), for 1 ≤ i ≤ n, is a solution to the
resulting linear programming problem.

Conversely, if xi = vi, for 1 ≤ i ≤ n, is a solution to the resulting linear programming problem, then f
with f(i) = vi, for 1 ≤ i ≤ n, is a maximum flow for G = (V,E) and c. */

4

