Algorithms 2023: Reduction

(Based on [Manber 1989])

Yih-Kuen Tsay

November 27, 2023

1 Introductin

Introduction

- The basic idea of *reduction* (transformation is perhaps a better term) is to solve a problem with the solution to another "similar" problem.
- When Problem A can be reduced (transformed) to Problem B, there are two consequences:
 - A solution to Problem *B* may be used to solve Problem *A*.
 - If A is known to be "hard", then B is also necessarily "hard".

/* A reduction involves transforming/converting the input of Problem A into an input of Problem B. The conversion should be reasonably efficient (this will be made precise in the topic of NP-completeness). Otherwise, one might be able to reduce a hard problem to a simpler one, by solving the more time-consuming part during the process of conversion and leaving the easier part to the second problem. */

• One should avoid the pitfall of reducing a problem to another that is too general or too hard.

2 Bipartite Matching

Matching

- Given an undirected graph G = (V, E), a **matching** is a set of edges that do not share a common vertex.
- A maximum matching is one with the maximum number of edges.
- A maximal matching is one that cannot be extended by adding any other edge.

Bipartite Matching

- A bipartite graph G = (V, E, U) is a graph with $V \cup U$ as the set of vertices and E as the set of edges such that
 - -V and U are disjoint and
 - The edges in E connect vertices from V to vertices in U.

Problem 1. Given a bipartite graph G = (V, E, U), find a maximum matching in G.

Bipartite Matching (cont.)

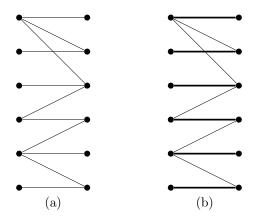


Figure: A bipartite graph and a maximum matching. Source: adapted from [Manber 1989, Figure 7.37].

Bipartite Matching (cont.)

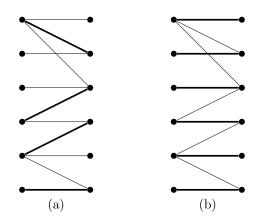


Figure: A maximal matching and a maximum matching. Source: adapted from [Manber 1989, Figure 7.37].

3 Network Flows

Networks

- Consider a directed graph, or network, G = (V, E) with two distinguished vertices: s (the source) with indegree 0 and t (the sink) with outdegree 0.
- Each edge e in E has an associated positive weight c(e), called the *capacity* of e.

The Network Flow Problem

• A flow is a function f on E that satisfies the following two conditions:

1.
$$0 \le f(e) \le c(e)$$
.
2. $\sum_{u} f(u, v) = \sum_{w} f(v, w)$, for all $v \in V - \{s, t\}$.

• The **network flow problem** is to maximize the flow f for a given network G.

4 Bipartite Matching to Network Flow

Bipartite Matching to Network Flow

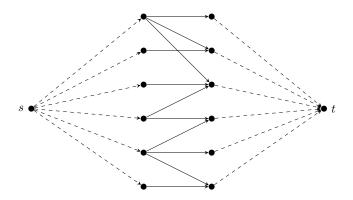


Figure: Reducing bipartite matching to network flow. Every edge has capacity 1. Source: redrawn from [Manber 1989, Figure 7.39].

Bipartite Matching to Network Flow (cont.)

- Mapping from the input G = (V, E, U) of the bipartite matching problem to the input G' = (V', E')and c of the network flow problem:
 - The network is G' = (V', E') where
 - $* V' = \{s\} \cup V \cup U \cup \{t\}$
 - * $E' = \{(s, v) \mid v \in V\} \cup E \cup \{(u, t) \mid u \in U\}$
 - The capacity for every $e \in E'$ is 1, i.e., $\forall e \in E', c(e) = 1$.
- Correspondence between the two solutions
 - A maximum flow f in G' defines a maximum matching M_f in G.
 - A maximum matching M in G induces a maximum flow f_M in G'.

5 Linear Programming

Notations

- Let \overline{v} denote a vector (v_1, v_2, \dots, v_n) of n constants or n variables.
- In the following, \overline{a} , \overline{b} , \overline{c} , and \overline{e} are vectors of n constants.
- And, \overline{x} and \overline{y} are vectors of n variables.
- The (inner or dot) product $\overline{a} \cdot \overline{x}$ of two vectors \overline{a} and \overline{x} is defined as follows:

$$\overline{a} \cdot \overline{x} = \sum_{i=1}^{n} a_i \cdot x_i$$

Linear Programming

• Objective function:

$$\overline{c} \cdot \overline{x}$$

• Equality constraints:

$$\overline{e}_1 \cdot \overline{x} = d_1 \overline{e}_2 \cdot \overline{x} = d_2 \vdots \\ \overline{e}_m \cdot \overline{x} = d_m$$

- Inequality constraints may be turned into equality constraints by introducing *slack* variables.
- Non-negative constraints: $x_j \ge 0$, for all j in P, where P is a subset of $\{1, 2, ..., n\}$.
- The goal is to *maximize* (or *minimize*) the value of the objective function, subject to the equality constraints.

6 Network Flow to Linear Programming

Network Flow to Linear Programming

- From the input G = (V, E) and c of the network flow problem to the objective function and constraints of linear programming:
 - Let x_1, x_2, \ldots, x_n represent the flow values of the *n* edges.
 - Objective function:

$$\sum_{i \in S} x_i$$

where S is the set of edges leaving the source.

– Inequality constraints:

$$x_i \leq c_i$$
, for all $i, 1 \leq i \leq n$

where c_i is the capacity of edge i.

- Equality constraints:

$$\sum_{i \text{ leaves } v} x_i - \sum_{j \text{ enters } v} x_j = 0, \text{ for every } v \in V \setminus \{s, t\}$$

- Non-negative constraints: $x_i \ge 0$, for all $i, 1 \le i \le n$.

/* If f is a maximum flow for G = (V, E) and c, then $x_i = f(i)$, for $1 \le i \le n$, is a solution to the resulting linear programming problem.

Conversely, if $x_i = v_i$, for $1 \le i \le n$, is a solution to the resulting linear programming problem, then f with $f(i) = v_i$, for $1 \le i \le n$, is a maximum flow for G = (V, E) and c. */