Data Structures

A Supplement (Based on [Manber 1989])

Yih-Kuen Tsay

Department of Information Management
National Taiwan University

Heaps

A (max binary) heap is a complete binary tree whose keys satisfy the heap property:
the key of every node is greater than or equal to the key of any of its children.
It supports the two basic operations of a priority queue:

Heaps

A (max binary) heap is a complete binary tree whose keys satisfy the heap property:
the key of every node is greater than or equal to the key of any of its children.
It supports the two basic operations of a priority queue:

* Insert(x): insert the key x into the heap.

潮 Remove(): remove and return the largest key from the heap.

Heaps (cont.)

- A complete binary tree can be represented implicitly by an array A as follows:

1. The root is stored in $A[1]$.
2. The left child of $A[i]$ is stored in $A[2 i]$ and the right child is stored in $A[2 i+1]$.

Heaps (cont.)

Heaps (cont.)

Algorithm Insert_to_Heap (A, n, x); begin

$$
\begin{aligned}
& n:=n+1 ; \\
& A[n]:=x ; \\
& \text { child }:=n ; \\
& \text { parent }:=n \text { div } 2 ; \\
& \text { while parent } \geq 1 \text { do } \\
& \quad \text { if } A[\text { parent }]<A[\text { child }] \text { then } \\
& \quad \text { swap }(A[\text { parent }], A[\text { child }]) ; \\
& \quad \text { child }:=\text { parent; } \\
& \quad \text { parent }:=\text { parent div } 2 \\
& \quad \text { else parent }:=0
\end{aligned}
$$

end

Heaps (cont.)

Before Remove()
After Remove()

Heaps (cont.)

Algorithm Remove_Max_from_Heap (A, n); begin
if $n=0$ then print "the heap is empty"
else Top_of_the_Heap $:=A[1] ;$
$A[1]:=A[n] ; n:=n-1$;
parent $:=1$; child $:=2$;
while child $\leq n-1$ do
if $A[$ child $]<A[$ child +1$]$ then child $:=$ child +1 ;
if $A[$ child $]>A[$ parent $]$ then $\operatorname{swap}(A[$ parent $], A[$ child $])$; parent := child; child $:=2 *$ child
else child $:=n$
end

AVL Trees

Definition

An AVL tree is a binary search tree such that, for every node, the difference between the heights of its left and right subtrees is at most 1 (the height of an empty tree is defined as 0).

This definition guarantees a maximal height of $O(\log n)$ for any AVL tree of n nodes.

AVL Trees (cont.)

A binary search tree but NOT an AVL tree

A binary search tree and also an AVL tree

AVL Trees (cont.)

(b)

Figure: Insertions that invalidate the AVL property. Note that this tree rooted at A shown here may be part of a larger AVL tree.
Source: redrawn from [Manber 1989, Figure 4.13].

AVL Trees (cont.)

Figure: A single rotation: (a) before; (b) after.
Source: redrawn from [Manber 1989, Figure 4.14].

AVL Trees (cont.)

Figure: A double rotation: (a) before; (b) after.
Source: redrawn from [Manber 1989, Figure 4.15].

Union-Find

There are n elements $x_{1}, x_{2}, \cdots, x_{n}$ divided into groups. Initially, each element is in a group by itself.
Two operations on the elements and groups:
, find (A) : returns the name of A 's group.
union (A, B) : combines A 's and B 's groups to form a new group with a unique name.

- To tell if two elements are in the same group, one may issue a find operation for each element and see if the returned names are the same.

Union-Find (cont.)

Figure: The representation for the union-find problem. Source: redrawn from [Manber 1989, Figure 4.16].

Balancing

The root also stores the number of elements in (i.e., the size of) its group.

- To balance the tree resulted from a union operation, let the smaller group join the larger group and update the size of the larger group accordingly.

Theorem (Theorem 4.2)

If balancing is used, then any tree of height $h(\geq 0)$ must contain at least 2^{h} elements.

- Any sequence of m find or union operations (where $m \geq n$) takes $O(m \log n)$ steps.

Union-Find (cont.)

Figure: Path compression: (a) before; (b) after.
Source: redrawn from [Manber 1989, Figure 4.17].

Effect of Path Compression

Theorem (Theorem 4.3)

If both balancing and path compression are used, any sequence of m find or union operations (where $m \geq n)$ takes $O\left(m \log ^{*} n\right)$ steps.

The value of $\log ^{*} n$ intuitively equals the number of times that one has to apply \log to n to bring its value down to 1 .

Code for Union-Find

```
Algorithm Union_Find_Init(A,n);
begin
    for i := 1 to n do
    A[i].parent := nil;
    A[i].size := 1
end
Algorithm Find(a);
begin
        if A[a].parent <> nil then
        A[a].parent := Find(A[a].parent);
        Find := A[a].parent;
        else
        Find := a
end
```


Code for Union-Find (cont.)

Algorithm Union(a,b);
begin

```
x := Find(a);
    y := Find(b);
    if x <> y then
        if A[x].size > A[y].size then
        A[y].parent := x;
        A[x].size := A[x].size + A[y].size;
```

 else
 A[x].parent := y;
 A[y].size := A[y].size + A[x].size
 end

