
Data Structures
A Supplement

(Based on [Manber 1989])

Yih-Kuen Tsay

Department of Information Management
National Taiwan University

Yih-Kuen Tsay (IM.NTU) Data Structures Algorithms 2023 1 / 19



Heaps

A (max binary) heap is a complete binary tree whose keys satisfy
the heap property:
the key of every node is greater than or equal to the key of any
of its children.

It supports the two basic operations of a priority queue:

Insert(x): insert the key x into the heap.
Remove(): remove and return the largest key from the heap.

Yih-Kuen Tsay (IM.NTU) Data Structures Algorithms 2023 2 / 19



Heaps

A (max binary) heap is a complete binary tree whose keys satisfy
the heap property:
the key of every node is greater than or equal to the key of any
of its children.

It supports the two basic operations of a priority queue:

Insert(x): insert the key x into the heap.
Remove(): remove and return the largest key from the heap.

Yih-Kuen Tsay (IM.NTU) Data Structures Algorithms 2023 2 / 19



Heaps (cont.)
A complete binary tree can be represented implicitly by an array
A as follows:

1. The root is stored in A[1].
2. The left child of A[i ] is stored in A[2i ] and the right child is

stored in A[2i + 1].

9

8

25

6

34

1

1 2 3 4 5 6 7 8 9 10 11 12
9 6 8 4 3 5 2 1

Yih-Kuen Tsay (IM.NTU) Data Structures Algorithms 2023 3 / 19



Heaps (cont.)

9

8

25

6

34

71

9

8

25

7

36

41

Before Insert(7) After Insert(7)

Yih-Kuen Tsay (IM.NTU) Data Structures Algorithms 2023 4 / 19



Heaps (cont.)

Algorithm Insert to Heap (A, n, x);
begin

n := n + 1;
A[n] := x ;
child := n;
parent := n div 2;
while parent ≥ 1 do

if A[parent] < A[child ] then
swap(A[parent],A[child ]);
child := parent;
parent := parent div 2

else parent := 0
end

Yih-Kuen Tsay (IM.NTU) Data Structures Algorithms 2023 5 / 19



Heaps (cont.)

9

8

25

7

36

41

8

5

24

7

36

41

Before Remove() After Remove()

Yih-Kuen Tsay (IM.NTU) Data Structures Algorithms 2023 6 / 19



Heaps (cont.)

Algorithm Remove Max from Heap (A, n);
begin

if n = 0 then print “the heap is empty”
else Top of the Heap := A[1];

A[1] := A[n]; n := n − 1;
parent := 1; child := 2;
while child ≤ n − 1 do

if A[child ] < A[child + 1] then
child := child + 1;

if A[child ] > A[parent] then
swap(A[parent],A[child ]);
parent := child ;
child := 2 ∗ child

else child := n
end

Yih-Kuen Tsay (IM.NTU) Data Structures Algorithms 2023 7 / 19



AVL Trees

Definition

An AVL tree is a binary search tree such that, for every node, the
difference between the heights of its left and right subtrees is at most
1 (the height of an empty tree is defined as 0).

This definition guarantees a maximal height of O(log n) for any AVL
tree of n nodes.

Yih-Kuen Tsay (IM.NTU) Data Structures Algorithms 2023 8 / 19



AVL Trees (cont.)

5

62

4

3

1

4

5

6

2

31

A binary search tree A binary search tree
but NOT an AVL tree and also an AVL tree

Yih-Kuen Tsay (IM.NTU) Data Structures Algorithms 2023 9 / 19



AVL Trees (cont.)

A

B

T1 T2

C

T3 T4

new

h + 1
h

h − 1

A

B

T1 T2

C

T3 T4

new

h

h + 1

h − 1

(a) (b)

Figure: Insertions that invalidate the AVL property. Note that this
tree rooted at A shown here may be part of a larger AVL tree.
Source: redrawn from [Manber 1989, Figure 4.13].

Yih-Kuen Tsay (IM.NTU) Data Structures Algorithms 2023 10 / 19



AVL Trees (cont.)

A

B

T1 T2

C

T3 T4

new

h + 1

h − 1

B

T1

A

T2

C

T3 T4new

h + 1

h − 1

(a) (b)

Figure: A single rotation: (a) before; (b) after.
Source: redrawn from [Manber 1989, Figure 4.14].

Yih-Kuen Tsay (IM.NTU) Data Structures Algorithms 2023 11 / 19



AVL Trees (cont.)

A

B

T1

D

T2 T3

T4

new

h h − 1

h

h

D

B

T1

T2

A

T3

T4new

h

h − 1

h

(a) (b)

Figure: A double rotation: (a) before; (b) after.
Source: redrawn from [Manber 1989, Figure 4.15].

Yih-Kuen Tsay (IM.NTU) Data Structures Algorithms 2023 12 / 19



Union-Find

There are n elements x1, x2, · · · , xn divided into groups. Initially,
each element is in a group by itself.

Two operations on the elements and groups:

find(A): returns the name of A’s group.
union(A,B): combines A’s and B’s groups to form a new group
with a unique name.

To tell if two elements are in the same group, one may issue a
find operation for each element and see if the returned names
are the same.

Yih-Kuen Tsay (IM.NTU) Data Structures Algorithms 2023 13 / 19



Union-Find (cont.)

A nil

C

G D

B nil

F

E nil

Figure: The representation for the union-find problem.
Source: redrawn from [Manber 1989, Figure 4.16].

Yih-Kuen Tsay (IM.NTU) Data Structures Algorithms 2023 14 / 19



Balancing

The root also stores the number of elements in (i.e., the size of)
its group.

To balance the tree resulted from a union operation, let the
smaller group join the larger group and update the size of the
larger group accordingly.

Theorem (Theorem 4.2)

If balancing is used, then any tree of height h (≥ 0) must contain at
least 2h elements.

Any sequence of m find or union operations (where m ≥ n)
takes O(m log n) steps.

Yih-Kuen Tsay (IM.NTU) Data Structures Algorithms 2023 15 / 19



Union-Find (cont.)

(a) (b)

Figure: Path compression: (a) before; (b) after.
Source: redrawn from [Manber 1989, Figure 4.17].

Yih-Kuen Tsay (IM.NTU) Data Structures Algorithms 2023 16 / 19



Effect of Path Compression

Theorem (Theorem 4.3)

If both balancing and path compression are used, any sequence of m
find or union operations (where m ≥ n) takes O(m log∗ n) steps.

The value of log∗ n intuitively equals the number of times that one
has to apply log to n to bring its value down to 1.

Yih-Kuen Tsay (IM.NTU) Data Structures Algorithms 2023 17 / 19



Code for Union-Find

Algorithm Union_Find_Init(A,n);

begin

for i := 1 to n do

A[i].parent := nil;

A[i].size := 1

end

Algorithm Find(a);

begin

if A[a].parent <> nil then

A[a].parent := Find(A[a].parent);

Find := A[a].parent;

else

Find := a

end

Yih-Kuen Tsay (IM.NTU) Data Structures Algorithms 2023 18 / 19



Code for Union-Find (cont.)

Algorithm Union(a,b);

begin

x := Find(a);

y := Find(b);

if x <> y then

if A[x].size > A[y].size then

A[y].parent := x;

A[x].size := A[x].size + A[y].size;

else

A[x].parent := y;

A[y].size := A[y].size + A[x].size

end

Yih-Kuen Tsay (IM.NTU) Data Structures Algorithms 2023 19 / 19


	Heaps
	AVL Trees
	Union-Find

