Algorithms 2023: Design by Induction

(Based on [Manber 1989])

Yih-Kuen Tsay
September 20, 2023

1 Introduction
Introduction

e It is not necessary to design the steps required to solve a problem from scratch.
e It is sufficient to guarantee the following:

1. Tt is possible to solve one small instance or a few small instances of the problem. (base case)

2. A solution to every problem/instance can be constructed from solutions to smaller problems/instances.
(inductive step)

2 Evaluating Polynomials

Evaluating Polynomials

Problem 1. Given a sequence of real numbers a,, an_1, -+, a1, ag, and a real number x, compute the
value of the polynomial
Po(z) = anz™ + ap_ 12"t -+ ayx + ap.

Motivation: different approaches to the inductive step may result in algorithms of very different time
complexities.

Evaluating Polynomials (cont.)
o Let P_1(2) =ap_12" 1+ + a1z + ap.

e Induction hypothesis (first attempt)

We know how to evaluate a polynomial represented by the input a,,—1, ---, a1, ag, at the point z, i.e.,
we know how to compute P,_1(z).

o P(z) = ana™ + Py_1(x).

e Number of multiplications:

Evaluating Polynomials (cont.)

e Induction hypothesis (second attempt)

We know how to compute P,_1(x), and we know how to compute 2"~ 1.

o P(v) =apz(z" 1)+ P_1(x).

e Number of multiplications: 2n — 1.
Evaluating Polynomials (cont.)

e Let P/ (2) =apa" ' +a, 12" 2+ - +a.

e Induction hypothesis (final attempt)

We know how to evaluate a polynomial represented by the coefficients a,, an,—1, - - -

x, i.e., we know how to compute P, _;(z).

e P,(z) =P (x)=P,_i(z) z+ aop.

Evaluating Polynomials (cont.)

e More generally,
P(x) = an
P/(z)=P/_i(z) - x4+ an_;, for 1 <i<n

3 (2

e Number of multiplications: n.
Evaluating Polynomials (cont.)
Algorithm Polynomial Evaluation (a, z);
begin

P = ay;

for i :=1tondo

P=xxP+a,_;
end

This algorithm is known as Horner’s rule.

3 Maximal Induced Subgraph

Maximal Induced Subgraph

, a1, at the point

Problem 2. Given an undirected graph G = (V, E) and an integer k, find an induced subgraph H = (U, F)
of G of maximum size such that all vertices of H have degree > k (in H), or conclude that no such induced

subgraph exists.

Design Idea: in the inductive step, we try to remove one vertex (that cannot possibly be part of the

solution) to get a smaller instance.

Maximal Induced Subgraph (cont.)

1 2 1 2

6 5

A graph G of eight nodes. Maximal induced subgraph of G
when k = 4.

Maximal Induced Subgraph (cont.)

e Recursive:

Algorithm Max Ind_Subgraph (G, k);
begin
if the degree of every vertex of G > k then
Max_Ind_Subgraph := G;
else let v be a vertex of G with degree < k;
Max _Ind_Subgraph := Max_Ind_Subgraph(G — v, k);
end

/* G — v denotes the graph obtained from G by removing vertex v and every edge incident to v. */

e Iterative:

Algorithm Max_Ind_Subgraph (G, k);

begin
while the degree of some vertex v of G < k do
G:=G—v;
Max_Ind_Subgraph := G;
end

4 One-to-One Mapping

One-to-One Mapping

Problem 3. Given a finite set A and a mapping f from A to itself, find a subset S C A with the maximum
number of elements, such that (1) the function f maps every element of S to another element of S (i.e., f
maps S into itself), and (2) no two elements of S are mapped to the same element (i.e., [is one-to-one
when restricted to S).

Design Idea: similar to the previous problem; in the inductive step, we try to remove one element (that
cannot possibly be part of the solution) to get a smaller instance.

An element that is not mapped to may be removed.

One-to-One Mapping (cont.)

1 1

2 2

3 3

4 4 Lo 04

5 o5 50 o5

A given set A and The maximal selected subset S and
a mapping to itself. the remaining 1-to-1 mapping.

One-to-One Mapping (cont.)

Algorithm Mapping (f,n);
begin
S = A
for j :=1 to n do c[j] := 0;
for j := 1 to n do increment ¢[f[j]];
for j :=1ton do
if c[j] = 0 then put j in Queue;
while Queue not empty do
remove i from the top of Queue;
S =85 —{i};
decrement c¢[f[i]];
if ¢[f[i]] = 0 then put f[i] in Queue
end

5 Celebrity

Celebrity

Problem 4. Given an n X n adjacency matriz, determine whether there exists an i (the “celebrity”) such
that all the entries in the i-th column (except for the ii-th entry) are 1, and all the entries in the i-th row
(except for the ii-th entry) are 0.

/* In an adjacency matrix representing a directed graph, a 1 in the i-th row and the j-th column indicates
that there is a directed edge from node ¢ to node j (or ¢ knows j), and a 0 indicates otherwise. */

Note: A celebrity corresponds to a sink of the directed graph.

Note: Every directed graph has at most one sink.

/* Proof by contradiction. */

Motivation: the trivial solution has a time complexity of O(n?). Can we do better, in O(n)?

To achieve O(n) time, we must reduce the problem size by at least one in constant time.

Celebrity (cont.)

1 2 1 2
3 3
4 4
5 5
A graph of six nodes A graph of six nodes
with a sink (node 4). without a sink.

Celebrity (cont.)
Basic idea: check whether ¢ knows j.

In either case, one of the two may be eliminated.
/* If i knows j, then i is not a celebrity. If ¢ does not know j, then j is not a celebrity. */
The O(n) algorithm proceeds in two stages:

e Eliminate a node every round until only one is left.

/* The node that remains is not necessarily a celebrity, as we have not checked whether it knows any
previously deleted node or the other way around. */

e Check whether the remaining one is truly a celebrity.

Celebrity (cont.)

Algorithm Celebrity (Know);

begin
1:=1;
J=2
next := 3;

while next <n-+1 do
if Knowli, j] then i := next
else j := next;
next := next + 1;
if i = n+ 1 then candidate := j
else candidate := 1;

Celebrity (cont.)

wrong := false;
k=1,
Know[candidate, candidate] := false;
while not wrong and k < n do
if Know|[candidate, k] then wrong := true;

if not Knowlk, candidate] then
if candidate # k then wrong := true;
k:=k+1;
if not wrong then celebrity := candidate
else celebrity := 0;
end

6 The Skyline Problem

The Skyline Problem

Problem 5. Given the exact locations and shapes of several rectangular buildings in a city, draw the skyline
(in two dimension) of these buildings, eliminating hidden lines.

Motivation: different approaches to the inductive step may result in algorithms of very different time
complexities.

Compare: adding buildings one by one to an existing skyline merging two skylines of about the same
size

The Skyline Problem
e Adding one building at a time:

T(1) = O(1)
{ T(n)=T(n-1)+0(n),n>2
Time complexity: O(n?).
4; Tn)=Tn—-1)+0(n)=(T(n—-2)+0(Mn—-1))+0(n)=---=0(1)+0(2) +---+ O(n) = O(n?).

e Merging two skylines every round:

T(1) =0(1)
T(n) =2T(5)+O(n),n > 2

Time complexity: O(nlogn).
/* Apply the master theorem. Here, a =2,b=2, k=1, and b* =2 =a. */

Representation of a Skyline
Input: (1,11,5), (2,6,7), (3,13,9), (12,7,16), (14,3,25), (19,18,22), (23,13,29), and (24,4,28).

0) 10 15 20 25 30

Source: adapted from [Manber 1989, Figure 5.5(a)].

Representation of a Skyline (cont.)

Representation: (1,11,3,13,9,0,12,7,16,3,19,18,22,3,23,13,29).

]

Source: adapted from [Manber 1989, Figure 5.5(b)].

Adding a Building

Source: adapted from [Manber 1989, Figure 5.6].

Merging Two Skylines

0 5 10 15 20 25 30
o Add (5,9,26) to (1,11,3,13,9,0,12,7,16,3,19,18,22,3,23,13,29).
0 5 10 15 20 25 30
e The skyline becomes (1,11,3,13,9,9,19,18,22,9,23,13,29).
0 5 10 15 20 25 30

Source: adapted from [Manber 1989, Figure 5.7].

7 Balance Factors in Binary Trees

Balance Factors in Binary Trees

Problem 6. Given a binary tree T with n nodes, compute the balance factors of all nodes.

The balance factor of a node is defined as the between the height of the node’s left subtree and
the height of the node’s right subtree.

Motivation: an example of why we must strengthen the hypothesis (and hence the problem to be solved).

Balance Factors in Binary Trees (cont.)

3/0

1/ -1 1/1
[

SN/

Figure: A binary tree. The numbers represent h/b, where h is the height and b is the balance factor.
Source: redrawn from [Manber 1989, Figure 5.8].

Balance Factors in Binary Trees (cont.)

e Induction hypothesis

We know how to compute balance factors of all nodes in trees that have < n nodes.

e Stronger induction hypothesis

We know how to compute balance factors and heights of all nodes in trees that have < n nodes.

8 Maximum Consecutive Subsequence

Maximum Consecutive Subsequence

Problem 7. Given a sequence 1, a2, -+, Tp of real numbers (not necessarily positive), find a subsequence
Ti, Tit1, -, x; (of consecutive elements) such that the sum of the numbers in it is mazimum over all
subsequences of consecutive elements.

Example: In the sequence (2,—3,1.5,—1,3,—2, —3,3), the maximum subsequence is (1.5, —1, 3).

Motivation: another example of strengthening the hypothesis.

Maximum Consecutive Subsequence (cont.)

e Induction hypothesis

We know how to find the maximum subsequence in sequences of size < n.

e Stronger induction hypothesis

We know how to find, in sequences of size < n, the maximum subsequence overall and the maximum
subsequence that is a suffix.

Reasoning: the maximum subsequence of problem size n is obtained either
— directly from the maximum subsequence of problem size n — 1 or
— from appending the n-th element to the maximum suffix of problem size n — 1.
Maximum Consecutive Subsequence (cont.)

Algorithm Max_Consec_Subseq (X, n);

begin
Global_Mazx := 0;
Suffix_Maz := 0;

for i := 1tondo

if x[i] + Suffiz-Maz > Global_Maz then
Suffiz_Maz := Suffix_Maz + x[i];
Global_Maz := Suffix_Maz

else if z[i] + Suffiz_Maz > 0 then

Suffic_Maz := Suffix_Maz + x[i]
else Suffiz_-Max := 0
end

9 The Knapsack Problem

The Knapsack Problem

Problem 8. Given an integer K and n items of different sizes such that the i-th item has an integer size
k;, find a subset of the items whose sizes sum to exactly K, or determine that no such subset exists.

Design Idea: use strong induction so that solutions to all smaller instances may be used.

The Knapsack Problem (cont.)
e Let P(n, K) denote the problem where n is the number of items and K is the size of the knapsack.

¢ Induction hypothesis
We know how to solve P(n — 1, K).

e Stronger induction hypothesis
We know how to solve P(n — 1,k), for all 0 < k < K.
Reasoning: P(n, K) has a solution if either

— P(n — 1, K) has a solution or
— P(n—1,K — k) does, provided K — k,, > 0.

The Knapsack Problem (cont.)

An example of the table constructed for the knapsack problem:

l [

[1 [23845678

[9]

10 |

11 [12]

13

14

15]

16|

N

Q| 0| 0[O[Q||

(N /U (VN
Nk
o o w

ololo||

I - 1 - - -
O - O - 1 1
[€] - [€]

1 O O

“I”: a solution containing this item has been found.
“O”: a solution without this item has been found.

: no solution has yet been found.
Source: adapted from [Manber 1989, Figure 5.11].

The Knapsack Problem (cont.)

Algorithm Knapsack (S5, K);
P[0, 0].exist := true;
for k :=1to K do
P[0, k].exist := false;
for i :=1tondo
for k :=0to K do
Pli, k].exist := false;
if P[i — 1, k].exist then
Pli, k].exist := true;
Pli, k].belong := false
else if k — S[i] > 0 then
if Pli — 1,k — S[i]].exist then
Pli, k].exist := true;
Pli, k].belong = true

10

