Algorithms 2023: Design by Induction

(Based on [Manber 1989])
Yih-Kuen Tsay
September 20, 2023

1 Introduction

Introduction

- It is not necessary to design the steps required to solve a problem from scratch.
- It is sufficient to guarantee the following:

1. It is possible to solve one small instance or a few small instances of the problem. (base case)
2. A solution to every problem/instance can be constructed from solutions to smaller problems/instances. (inductive step)

2 Evaluating Polynomials

Evaluating Polynomials

Problem 1. Given a sequence of real numbers $a_{n}, a_{n-1}, \cdots, a_{1}, a_{0}$, and a real number x, compute the value of the polynomial

$$
P_{n}(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0} .
$$

Motivation: different approaches to the inductive step may result in algorithms of very different time complexities.

Evaluating Polynomials (cont.)

- Let $P_{n-1}(x)=a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$.
- Induction hypothesis (first attempt)

We know how to evaluate a polynomial represented by the input $a_{n-1}, \cdots, a_{1}, a_{0}$, at the point x, i.e., we know how to compute $P_{n-1}(x)$.

- $P_{n}(x)=a_{n} x^{n}+P_{n-1}(x)$.
- Number of multiplications:

$$
n+(n-1)+\cdots+2+1=\frac{n(n+1)}{2}
$$

Evaluating Polynomials (cont.)

- Induction hypothesis (second attempt)

We know how to compute $P_{n-1}(x)$, and we know how to compute x^{n-1}.

- $P_{n}(x)=a_{n} x\left(x^{n-1}\right)+P_{n-1}(x)$.
- Number of multiplications: $2 n-1$.

Evaluating Polynomials (cont.)

- Let $P_{n-1}^{\prime}(x)=a_{n} x^{n-1}+a_{n-1} x^{n-2}+\cdots+a_{1}$.
- Induction hypothesis (final attempt)

We know how to evaluate a polynomial represented by the coefficients $a_{n}, a_{n-1}, \cdots, a_{1}$, at the point x, i.e., we know how to compute $P_{n-1}^{\prime}(x)$.

- $P_{n}(x)=P_{n}^{\prime}(x)=P_{n-1}^{\prime}(x) \cdot x+a_{0}$.

Evaluating Polynomials (cont.)

- More generally,

$$
\left\{\begin{array}{l}
P_{0}^{\prime}(x)=a_{n} \\
P_{i}^{\prime}(x)=P_{i-1}^{\prime}(x) \cdot x+a_{n-i}, \text { for } 1 \leq i \leq n
\end{array}\right.
$$

- Number of multiplications: n.

Evaluating Polynomials (cont.)

```
Algorithm Polynomial_Evaluation \((\bar{a}, x)\);
begin
    \(P:=a_{n} ;\)
    for \(i:=1\) to \(n\) do
        \(P:=x * P+a_{n-i}\)
```

end

This algorithm is known as Horner's rule.

3 Maximal Induced Subgraph

Maximal Induced Subgraph

Problem 2. Given an undirected graph $G=(V, E)$ and an integer k, find an induced subgraph $H=(U, F)$ of G of maximum size such that all vertices of H have degree $\geq k$ (in H), or conclude that no such induced subgraph exists.

Design Idea: in the inductive step, we try to remove one vertex (that cannot possibly be part of the solution) to get a smaller instance.

Maximal Induced Subgraph (cont.)

A graph G of eight nodes.

Maximal induced subgraph of G when $k=4$.

Maximal Induced Subgraph (cont.)

- Recursive:

```
Algorithm Max_Ind_Subgraph (G,k);
begin
    if the degree of every vertex of G\geqk then
        Max_Ind_Subgraph := G;
    else let v}\mathrm{ be a vertex of }G\mathrm{ with degree <k;
        Max_Ind_Subgraph := Max_Ind_Subgraph(G - v,k);
end
```

$$
/^{*} G-v \text { denotes the graph obtained from } G \text { by removing vertex } v \text { and every edge incident to } v .{ }^{*} /
$$

- Iterative:

```
Algorithm Max_Ind_Subgraph ( \(G, k\) );
begin
    while the degree of some vertex \(v\) of \(G<k\) do
        \(G:=G-v ;\)
    Max_Ind_Subgraph \(:=G\);
end
```


4 One-to-One Mapping

One-to-One Mapping

Problem 3. Given a finite set A and a mapping f from A to itself, find a subset $S \subseteq A$ with the maximum number of elements, such that (1) the function f maps every element of S to another element of S (i.e., f maps S into itself), and (2) no two elements of S are mapped to the same element (i.e., f is one-to-one when restricted to S).

Design Idea: similar to the previous problem; in the inductive step, we try to remove one element (that cannot possibly be part of the solution) to get a smaller instance.

An element that is not mapped to may be removed.

One-to-One Mapping (cont.)

A given set A and a mapping to itself.

The maximal selected subset S and the remaining 1-to-1 mapping.

One-to-One Mapping (cont.)

```
Algorithm Mapping ( \(f, n\) );
begin
    \(S:=A\)
    for \(j:=1\) to \(n\) do \(c[j]:=0\);
    for \(j:=1\) to \(n\) do increment \(c[f[j]]\);
    for \(j:=1\) to \(n\) do
        if \(c[j]=0\) then put \(j\) in Queue;
    while Queue not empty do
        remove \(i\) from the top of Queue;
        \(S:=S-\{i\} ;\)
        decrement \(c[f[i]]\);
        if \(c[f[i]]=0\) then put \(f[i]\) in Queue
end
```


5 Celebrity

Celebrity

Problem 4. Given an $n \times n$ adjacency matrix, determine whether there exists an i (the "celebrity") such that all the entries in the i-th column (except for the ii-th entry) are 1 , and all the entries in the i-th row (except for the ii-th entry) are 0 .
$/^{*}$ In an adjacency matrix representing a directed graph, a 1 in the i-th row and the j-th column indicates that there is a directed edge from node i to node j (or i knows j), and a 0 indicates otherwise. */

Note: A celebrity corresponds to a sink of the directed graph.
Note: Every directed graph has at most one sink.
/* Proof by contradiction. */
Motivation: the trivial solution has a time complexity of $O\left(n^{2}\right)$. Can we do better, in $O(n)$?
To achieve $O(n)$ time, we must reduce the problem size by at least one in constant time.

Celebrity (cont.)

A graph of six nodes with a sink (node 4).

A graph of six nodes without a sink.

Celebrity (cont.)

Basic idea: check whether i knows j.
In either case, one of the two may be eliminated.
$/^{*}$ If i knows j, then i is not a celebrity. If i does not know j, then j is not a celebrity. ${ }^{*} /$
The $O(n)$ algorithm proceeds in two stages:

- Eliminate a node every round until only one is left.
/* The node that remains is not necessarily a celebrity, as we have not checked whether it knows any previously deleted node or the other way around. */
- Check whether the remaining one is truly a celebrity.

Celebrity (cont.)

```
Algorithm Celebrity (Know);
begin
    \(i:=1 ;\)
    \(j:=2\);
    next \(:=3\);
    while next \(\leq n+1\) do
        if \(\operatorname{Know}[i, j]\) then \(i:=n e x t\)
            else \(j:=\) next;
        next \(:=n e x t+1\);
    if \(i=n+1\) then candidate \(:=j\)
        else candidate \(:=i\);
```


Celebrity (cont.)

```
wrong \(:=\) false;
\(k:=1\);
Know[candidate, candidate] \(:=\) false;
while not wrong and \(k \leq n\) do
    if Know \([\) candidate, \(k]\) then wrong \(:=\) true;
```

```
    if not Know[k,candidate] then
        if candidate }\not=k\mathrm{ then wrong := true;
        k:= k+1;
    if not wrong then celebrity := candidate
    else celebrity:= 0;
end
```


6 The Skyline Problem

The Skyline Problem

Problem 5. Given the exact locations and shapes of several rectangular buildings in a city, draw the skyline (in two dimension) of these buildings, eliminating hidden lines.

Motivation: different approaches to the inductive step may result in algorithms of very different time complexities.

Compare: adding buildings one by one to an existing skyline vs. merging two skylines of about the same size

The Skyline Problem

- Adding one building at a time:

$$
\left\{\begin{array}{l}
T(1)=O(1) \\
T(n)=T(n-1)+O(n), n \geq 2
\end{array}\right.
$$

Time complexity: $O\left(n^{2}\right)$.

$$
\underset{* /}{/ *} T(n)=T(n-1)+O(n)=(T(n-2)+O(n-1))+O(n)=\cdots=O(1)+O(2)+\cdots+O(n)=O\left(n^{2}\right) .
$$

- Merging two skylines every round:

$$
\left\{\begin{array}{l}
T(1)=O(1) \\
T(n)=2 T\left(\frac{n}{2}\right)+O(n), n \geq 2
\end{array}\right.
$$

Time complexity: $O(n \log n)$.
/* Apply the master theorem. Here, $a=2, b=2, k=1$, and $b^{k}=2=a . * /$

Representation of a Skyline

Input: $(1, \mathbf{1 1}, 5),(2,6,7),(3, \mathbf{1 3}, 9),(12, \mathbf{7}, 16),(14, \mathbf{3}, 25),(19, \mathbf{1 8}, 22),(23, \mathbf{1 3}, 29)$, and $(24,4,28)$.

Source: adapted from [Manber 1989, Figure 5.5(a)].

Representation of a Skyline (cont.)

Representation: $(1, \mathbf{1 1}, 3, \mathbf{1 3}, 9, \mathbf{0}, 12, \mathbf{7}, 16, \mathbf{3}, 19, \mathbf{1 8}, 22, \mathbf{3}, 23, \mathbf{1 3}, 29)$.

Source: adapted from [Manber 1989, Figure 5.5(b)].

Adding a Building

- Add $(5, \mathbf{9}, 26)$ to $(1, \mathbf{1 1}, 3, \mathbf{1 3}, 9, \mathbf{0}, 12, \mathbf{7}, 16, \mathbf{3}, 19, \mathbf{1 8}, 22, \mathbf{3}, 23, \mathbf{1 3}, 29)$.

Source: adapted from [Manber 1989, Figure 5.6].

- The skyline becomes $(1, \mathbf{1 1}, 3, \mathbf{1 3}, 9, \mathbf{9}, 19, \mathbf{1 8}, 22, \mathbf{9}, 23, \mathbf{1 3}, 29)$.

Merging Two Skylines

7 Balance Factors in Binary Trees

Balance Factors in Binary Trees

Problem 6. Given a binary tree T with n nodes, compute the balance factors of all nodes.

The balance factor of a node is defined as the difference between the height of the node's left subtree and the height of the node's right subtree.

Motivation: an example of why we must strengthen the hypothesis (and hence the problem to be solved).

Balance Factors in Binary Trees (cont.)

Figure: A binary tree. The numbers represent h / b, where h is the height and b is the balance factor. Source: redrawn from [Manber 1989, Figure 5.8].

Balance Factors in Binary Trees (cont.)

- Induction hypothesis

We know how to compute balance factors of all nodes in trees that have $<n$ nodes.

- Stronger induction hypothesis

We know how to compute balance factors and heights of all nodes in trees that have $<n$ nodes.

8 Maximum Consecutive Subsequence

Maximum Consecutive Subsequence

Problem 7. Given a sequence $x_{1}, x_{2}, \cdots, x_{n}$ of real numbers (not necessarily positive), find a subsequence $x_{i}, x_{i+1}, \cdots, x_{j}$ (of consecutive elements) such that the sum of the numbers in it maximum over all subsequences of consecutive elements.

Example: In the sequence $(2,-3,1.5,-1,3,-2,-3,3)$, the maximum subsequence is $(1.5,-1,3)$.
Motivation: another example of strengthening the hypothesis.

Maximum Consecutive Subsequence (cont.)

- Induction hypothesis

We know how to find the maximum subsequence in sequences of size $<n$.

- Stronger induction hypothesis

We know how to find, in sequences of size $<n$, the maximum subsequence overall and the maximum subsequence that is a suffix.

Reasoning: the maximum subsequence of problem size n is obtained either

- directly from the maximum subsequence of problem size $n-1$ or
- from appending the n-th element to the maximum suffix of problem size $n-1$.

Maximum Consecutive Subsequence (cont.)

```
Algorithm Max_Consec_Subseq ( }X,n)\mathrm{ ;
begin
    Global_Max := 0;
    Suffix_Max := 0;
    for }i:=1\mathrm{ to }n\mathrm{ do
        if x[i]+Suffix_Max> Global_Max then
        Suffix_Max:= Suffix_Max + x[i];
        Global_Max := Suffix_Max
            else if x[i] + Suffix_Max>0 then
                Suffix_Max :=Suffix_Max + x[i]
            else Suffix_Max:=0
end
```


9 The Knapsack Problem

The Knapsack Problem

Problem 8. Given an integer K and n items of different sizes such that the i-th item has an integer size k_{i}, find a subset of the items whose sizes sum to exactly K, or determine that no such subset exists.

Design Idea: use strong induction so that solutions to all smaller instances may be used.

The Knapsack Problem (cont.)

- Let $P(n, K)$ denote the problem where n is the number of items and K is the size of the knapsack.
- Induction hypothesis

We know how to solve $P(n-1, K)$.

- Stronger induction hypothesis

We know how to solve $P(n-1, k)$, for all $0 \leq k \leq K$.
Reasoning: $P(n, K)$ has a solution if either

- $P(n-1, K)$ has a solution or
- $P\left(n-1, K-k_{n}\right)$ does, provided $K-k_{n} \geq 0$.

The Knapsack Problem (cont.)
An example of the table constructed for the knapsack problem:

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	O	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
$k_{1}=2$	O	-	I	-	-	-	-	-	-	-	-	-	-	-	-	-	-
$k_{2}=3$	O	-	O	I	-	I	-	-	-	-	-	-	-	-	-	-	-
$k_{3}=5$	O	-	O	O	-	O	-	I	-	-	-	-	-	-	-	-	-

"I": a solution containing this item has been found.
"O": a solution without this item has been found.
"-": no solution has yet been found.
Source: adapted from [Manber 1989, Figure 5.11].

The Knapsack Problem (cont.)

```
Algorithm Knapsack \((S, K)\);
    \(P[0,0]\).exist \(:=\) true;
    for \(k:=1\) to \(K\) do
        \(P[0, k]\).exist \(:=\) false;
    for \(i:=1\) to \(n\) do
        for \(k:=0\) to \(K\) do
            \(P[i, k]\).exist \(:=\) false;
            if \(P[i-1, k]\).exist then
                \(P[i, k]\). exist \(:=\) true;
            \(P[i, k]\).belong \(:=\) false
        else if \(k-S[i] \geq 0\) then
            if \(P[i-1, k-S[i]]\).exist then
                \(P[i, k]\).exist \(:=\) true;
                    \(P[i, k]\). belong \(:=\) true
```

